题目内容

11.K2FeO4是一种新型水处理剂,工业上可用FeSO4制备K2FeO4,其工艺流程如下:

请回答下列问题:
(1)实验室保存硫酸亚铁溶液时,加入少量稀硫酸,其目的是抑制亚铁离子的水解.
(2)写出上述流程中制备高铁酸钠的化学方程式:2Fe(OH)3+3NaClO+4NaOH=2Na2FeO4+3NaCl+5H2O.
(3)高铁酸钠转化成高铁酸钾的原理是高铁酸钠在溶液中溶解大于高铁酸钾.
(4)已知常温下,K甲[Fe(OH)3]=1.0×10-34.离子浓度≤1×10-5mol.L-1时,可认为已完全沉淀.则上述操作中,调节pH的范围应为大于4.3.
(5)高铁酸钾净水原理如下:首先,具有强氧化性的高铁酸钾氧化细菌,高铁酸钾被还原成Fe3+,然后,铁离子水解生成氢氧化铁胶体粒子,胶粒聚沉水中杂质.Fe3+水解包括以下几步反应:
①Fe3+(aq)+H2O(l)?Fe(OH)2+(aq)+H+(aq)K1
②Fe(OH)2+(aq)+H2O(l)?Fe(OH)2+(aq)+H+(aq)K2
③Fe(OH)2++H2O(l)?Fe(OH)3(胶体)+H+(aq)K3
K1、K2、K3的大小排序为K1>K2>K3
如果废水中酸性过强,不利于净水,其原因是溶液酸性过强会抑制铁离子的水解,不能产生氢氧化铁胶体.

分析 根据反应的流程可知,硫酸亚铁被双氧水氧化,再调节pH值可得氢氧化铁固体,氢氧化铁固体在碱性条件下被次氯酸钠氧化得Na2FeO4溶液,在溶液中加入氯化钾结晶可得K2FeO4
(1)在保存硫酸亚铁溶液时要防止亚铁离子水解;
(2)氢氧化铁与次氯酸钠反应生成高铁酸钠和氯化钠,利用元素守恒和电子得失守恒书写化学方程式;
(3)根据在溶液中溶解大的物质可以生成溶解度小的物质的原理分析;
(4)调节pH使铁离子沉淀完全,即c(Fe3+)≤1×10-5mol.L-1,根据Ksp[Fe(OH)3]=c(Fe3+)•c3(OH-)可计算出溶液中氢氧根离子的浓度,进而确定pH值;
(5)多元弱酸弱碱是分步电离的,所以弱碱阳离子也是分步水解的,其中一级水解程度大于二级水解,二级水解程度大于三级水解,据此判断水解平衡常数的大小,溶液酸性过强会抑制铁离子的水解.

解答 解:根据反应的流程可知,硫酸亚铁被双氧水氧化,再调节pH值可得氢氧化铁固体,氢氧化铁固体在碱性条件下被次氯酸钠氧化得Na2FeO4溶液,在溶液中加入氯化钾结晶可得K2FeO4
(1)在保存硫酸亚铁溶液时要防止亚铁离子水解,所以加入少量的硫酸目的是抑制亚铁离子的水解,
故答案为:抑制亚铁离子的水解;
(2)氢氧化铁与次氯酸钠反应生成高铁酸钠和氯化钠,反应方程式为2Fe(OH)3+3NaClO+4NaOH=2Na2FeO4+3NaCl+5H2O,
故答案为:2Fe(OH)3+3NaClO+4NaOH=2Na2FeO4+3NaCl+5H2O;
(3)高铁酸钠在溶液中溶解大于高铁酸钾,所以铁酸钠在溶液中可以转化成高铁酸钾,
故答案为:高铁酸钠在溶液中溶解大于高铁酸钾;
(4)调节pH使铁离子沉淀完全,即c(Fe3+)≤1×10-5mol.L-1,根据Ksp[Fe(OH)3]=c(Fe3+)•c3(OH-)可知溶液中c(OH-)=$\root{3}{\frac{1.0×10{\;}^{-34}}{1×1{0}^{-5}}}$=1×$1{0}^{-\frac{29}{3}}$,c(H+)=1×$1{0}^{-\frac{13}{3}}$,所以pH≈4.3,所以要使铁离子完全沉淀,溶液的pH值大于4.3,
故答案为:大于4.3;
(5)多元弱酸弱碱是分步电离的,所以弱碱阳离子也是分步水解的,其中一级水解程度大于二级水解,二级水解程度大于三级水解,所以K1>K2>K3,溶液酸性过强会抑制铁离子的水解,不能产生氢氧化铁胶体,所以不利于净水,
故答案为:K1>K2>K3;溶液酸性过强会抑制铁离子的水解,不能产生氢氧化铁胶体.

点评 本题主要考查化学工艺流程分析,意在考查考生对已学知识的掌握、理解、迁移、转化、重组和解决实际问题的能力.

练习册系列答案
相关题目
16.二甲醚代替柴油具有绝对的优势.二甲醚制备方法有甲醇液相脱水法和合成气气相制备法两种.回答下列问题:
(1)甲醇液相脱水法是将CH3OH与浓硫酸反应生成CH3HS04,该物质再与CH3OH合成 CH3OCH3.写出上述过程中的化学方程式:CH3OH+H2SO4=CH3HS04+H2O、CH3HS04+CH3OH→CH3OCH3+H2SO4
(2)已知:
甲醇合成反应:CO(g)+2H2(g)═CH3OH(g)△H1=90.7kJ•moL-1
合成二甲醚的反应:2CH3OH(g)═CH3OCH3(g)+H2O(g)△H2=-23.5kJ•moL-1
煤气变换反应:CO(g)+H20(g)═C02(g)+H2(g)△H3=-41.2kJ•moL-1
则:CO与H2直接合成二甲醚的反应:
3CO(g)+3H2(g)═CH3OCH3(g)+C02(g)△H=-246.1kJ/mol
与甲醇液相脱水法相比,CO与H2直接合成二甲醚的优点是不存在硫酸腐蚀设备的问题.
(3)如图甲是在容积为1L的容器中通入2molCO和2molH2,发生CO与H2直接合成二甲醚的反应时,CO的平衡转化率随温度、压强的变化关系.

①压强pl、p2、p3的大小关系是P1>P2>P3
②316°C时,反应的平衡常数K=$\frac{1}{9}$
③若压强为p3,温度为316°C,起始时$\frac{n({H}_{2})}{n(CO)}$=2,则反应达到平衡时,CO的转化率>50%(填”>”、“<”或“=”).
(4)C0与H2直接合成二甲醚法中,若以Cu-Mn比例与反应转化率选择性的关系如图乙,所示.分析图象信息可知最有利于二甲醚合成的$\frac{n(Mn)}{n(Cu)}$约为2
(5)二甲醚直接燃料电池具有启动快、效率高等优点,其能量密度等于甲醇直接燃料电池 (5.93kW•h•kg-1).若电解质为酸性,二甲醚直接燃料电池的负极反应为CH3OCH3-12e-+3H2O=2CO2↑+12H+
3.氯化法是合成硫酰氯(SO2Cl2)的常用方法,实验室合成硫酰氯(SO2Cl2)的实验装置如图所示:
已知:①SO2(g)+Cl2(g)$\frac{\underline{\;催化剂\;}}{\;}$SO2Cl2(l)△H=-97.3kJ/mol.
②硫酰氯通常条件下为无色液体,熔点为-54.1℃,沸点为69.1℃,在潮湿空气中“发烟”.
③100℃以上开始分解,生成二氧化硫和氯气
(1)仪器a的名称为干燥管,装置B的作用是干燥二氧化硫气体;仪器c的溶液滴入仪器d中所产生的实验现象是烧瓶中有黄绿气体产生.
(2)若装置A中的70%硫酸和亚硫酸钠分别换成浓硫酸和Cu片,几乎不能得到SO2Cl2,原因是浓硫酸和Cu片在不加热的条件下不能产生二氧化硫.
(3)取部分C装置所得的产物于试管中,再向其加水,出现白雾,振荡,静置得到无色溶液.经检验该溶液中的阴离子(除OH-外)只有SO42-、Cl-,证明无色液体是SO2Cl2
①写出SO2Cl2与H2O反应的化学方程式SO2Cl2+2H2O=H2SO4+2HCl;
②检验该溶液中Cl-的方法是在所得溶液中滴加硝酸酸化的硝酸银溶液,若溶液中出现白色沉淀,则说明溶液中有氯离子.
(4)若缺少装置D,氯气和二氧化碳可能发生反应的离子方程式为Cl2+SO2+2H2O=SO42-+2Cl-+4H+.整套装置的缺点是没有尾气吸收装置.
(5)为提高本实验中硫酰氯的产率,在实验操作中需要注意的事项有②③(填序号).
①加热三颈烧瓶          
②控制气流速率,宜慢不宜快
③若三颈烧瓶发烫,可适当降温.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网