题目内容
4.(1)已知CH4、H2、CO的燃烧热△H分别为-890.3kJ/mol、-285.8kJ/mol、-283.0kJ/mol则CH4(g)+CO2(g)═2CO(g)+2H2(g)△H=+247.3kJ/mol.
(2)以CO2和NH3为原料合成尿素是研究CO2的成功范例.在尿素合成塔中反应如下:2NH3(g)+CO2(g)?CO(NH2)2(s)+H2O(g)△H=-86.98kJ/mol反应中影响CO2平衡转化率的因素很多,如图为特定条件下,不同水碳比$\frac{n({H}_{2}O)}{n(C{O}_{2})}$和温度对CO2平衡转化率的影响曲线.
①为提高CO2的转化率,生产中除控制温度外,还可采取的措施有增大压强、降低水碳比
②当温度高于190℃,CO2平衡转化率出现如图所示的变化趋势,其原因是温度高于190℃时,因为反应Ⅲ是放热反应,温度升高平衡向逆方向进行,CO2的平衡转化率降低
(3)向1.0L的密闭容器中通入0.2mol NH3和0.1mol CO2,在一定的温度下,发生反应2NH3(g)+CO2(g)?CO(NH2)2(s)+H2O(g),反应时间与气体总压强p的数据如下表:
| 时间/min | 0 | 10 | 20 | 30 | 40 | 50 | 65 | 80 | 100 |
| 总压强p/100kPa | 9.53 | 7.85 | 6.37 | 5.78 | 5.24 | 4.93 | 4.67 | 4.45 | 4.45 |
(4)氨基甲酸铵NH2COONH4极易水解成碳酸铵,酸性条件水解更彻底.将氨基甲酸铵粉末逐渐加入1L0.1mol/L的盐酸溶液中直到pH=7(室温下,忽略溶液体积变化),共用去0.052mol氨基甲酸铵,此时溶液中几乎不含碳元素.此时溶液中c(NH4+)=0.1mol/L;NH4+水解平衡常数值为4×10-9.
分析 (1)燃烧热的热化学方程式结合盖斯定律计算所需热化学方程式,得到反应的焓变;
(2)①不同水碳比$\frac{n({H}_{2}O)}{n(C{O}_{2})}$和温度影响CO2平衡转化率变化的趋势曲线分析可知,
②反应Ⅲ是放热反应,升温平衡逆向进行;
(3)依据化学平衡三行计算列式,气体压强之比等于气体物质的量之比,设氨气消耗物质的量x,
2NH3(g)+CO2(g)?CO(NH2)2(s)+H2O(g),
起始量在(mol) 0.2 0.1 0 0
变化量(mol) x 0.5x 0.5x 0.5x
平衡量(mol) 0.2-x 0.1-0.5x 0.5x 0.5x
气体压强之比等于气体物质的量之比,图表中可知80min反应达到平衡状态,转化率=$\frac{消耗量}{起始量}$×100%,反应速率v=$\frac{△c}{△t}$;
(4)根据氨基甲酸铵极易水解成碳酸铵,即反应式为NH2COONH4(s)+H2O?(NH4)2CO3,将氨基甲酸铵粉末逐渐加入1L0.1mol/L的盐酸溶液中直到pH=7并且溶液中几乎不含碳元素,所以溶液中只有H+、NH4+、OH-、Cl-,根据电荷守恒计算c(NH4+),根据NH4++H2O?NH3•H2O+OH-结合K=$\frac{c(N{H}_{3}•{H}_{2}O)c({H}^{+})}{c(N{{H}_{4}}^{+})}$进行计算;
解答 解:已知CH4、H2和CO的燃烧热分别为890.3kJ•mol-1、285.8kJ•mol-1、283.0kJ•mol-1,热化学方程式为:
①CH4(g)+2O2(g)=CO2(g)+2H2O(l)△H=-890.3kJ•mol-1
②H2(g)+$\frac{1}{2}$O2(g)=H2O(l)△H=-285.8kJ•mol-1
③CO(g)+$\frac{1}{2}$O2(g)=CO2(g)△H=-283.0kJ•mol-1
依据盖斯定律①-②×2-③×2得到:CH4(g)+CO2(g)=2CO(g)+2H2(g)△H=+247.3KJ/mol,
故答案为:+247.3;
(2)①反应Ⅲ:2NH3(g)+CO2(g)?CO(NH2)2(s)+H2O(g)△H3=-86.98kJ•mol-1,其他条件相同时,为提高CO2的平衡转化率,平衡正向进行,依据图象中的水碳比数据分析判断,生产中可以采取的措施是增大压强降低水碳比,二氧化碳转化率增大,
故答案为:增大压强,降低水碳比;
②反应Ⅲ:2NH3(g)+CO2(g)?CO(NH2)2(s)+H2O(g)△H3=-86.98kJ•mol-1,是放热反应,升温高于190°C,依据图象分析可知,二氧化碳转化率减小,因为温度升高,平衡逆向进行,
故答案为:温度高于190℃时,因为反应Ⅲ是放热反应,温度升高平衡向逆方向进行,CO2的平衡转化率降低;
(3)依据化学平衡三行计算列式,气体压强之比等于气体物质的量之比,设氨气消耗物质的量x,
2NH3(g)+CO2(g)?CO(NH2)2(s)+H2O(g),
起始量在(mol) 0.2 0.1 0 0
变化量(mol) x 0.5x 0.5x 0.5x
平衡量(mol) 0.2-x 0.1-0.5x 0.5x 0.5x
气体压强之比等于气体物质的量之比,图表中可知80min反应达到平衡状态,
$\frac{0.2+0.1}{0.2-x+0.1-0.5x+0.5x}$=$\frac{9.53}{4.45}$
x=0.16mol
平衡时NH3 的转化率=$\frac{消耗量}{起始量}$×100%=$\frac{0.16mol}{0.2mol}$×100%=80%,
0-80min内CO2的反应速率v=$\frac{△c}{△t}$=$\frac{\frac{0.5×0.16mol}{1L}}{80min}$=0.001mol/(L•min),
故答案为:80%;0.001mol/(L•min);
(4)因为氨基甲酸铵极易水解成碳酸铵,即反应式为NH2COONH4(s)+H2O?(NH4)2CO3,加入1L0.1mol/L的盐酸溶液中直到溶液pH=7并且溶液中几乎不含碳元素,所以溶液中只有H+、NH4+、OH-、Cl-,根据电荷守恒c(NH4+)=c(Cl-)=0.1mol/L,又用去0.052mol氨基甲酸铵,所以开始溶液中的铵根离子浓度为0.052mol/L×2=0.104mol/L,
NH4++H2O?NH3•H2O+H+;
开始 0.104mol/L 0
转化 0.004mol/L 0.004mol/L
平衡 0.1mol/L 0.004mol/L
又溶液为pH=7,所以氢离子浓度为10-7mol/L,则NH4+水解平衡常数K=$\frac{c(N{H}_{3}•{H}_{2}O)c({H}^{+})}{c(N{{H}_{4}}^{+})}$=$\frac{0.004×1{0}^{-7}}{0.1}$=4×10-9,
故答案为:0.1mol/L;4×10-9;
点评 本题考查化学反应速率、化学平衡的移动原理、弱碱根离子在溶液中的水解平衡的计算应用、平衡常数计算等知识,综合性较大,题目难度中等.
| A. | HCO3-、ClO-、Na+、H+ | B. | Cl-、NH4+、NO3-、H+ | ||
| C. | K+、Cu2+、Cl-、SO42- | D. | OH-、Mg2+、Na+、CO32- |
| A. | 10.7 | B. | 8.5 | C. | 32 | D. | 64 |
请回答下列问题:
(1)制备NH2COONH4的反应在一定条件下能自发进行,该反应的△H<0(填“>”“=”或“<”);要提高NH2COONH4的产率可采取的措施为增大压强、适当降低温度.
(2)装置中盛液体石蜡的鼓泡瓶作用是通过观察气泡,使气体流速均匀,调节NH3与CO2通入比例.
(3)一定条件下,在恒容密闭容器中通入体积比为2:1的NH3和CO2制备NH2COONH4固体.
①下列能说明反应达到平衡状态的是bd.
a、NH3和CO2物质的量之比为2:1
b.密闭容器中混合气体的密度不变
c、反应的焓变不变
d.固体的质量不在发生变化
②实验测得不同温度下达到平衡时气体的总浓度如表
| 温度(℃) | 20.0 | 30.0 | 40.0 |
| 平衡时气体总浓度 (×10-3mol•L-1) | 3.4 | 4.8 | 6.8 |
(4)己知:NH2C00NH4+2H20?NH4HCO3+NH3•H2O.分别用三份不份不同初始浓度的NH2COONH4溶液测定不同温度下的水解反应速率,得到c(NH2COO-)随时间变化趋势如图2所示.
①15℃时,0~6min内NH2COONH4水解反应的平均速率为0.05mol/(L•min).
②对比图中曲线a、b、c可知,水解反应速率最大的是b.
| A. | 为处理锅炉水垢中的CaSO4,可先用饱和Na2CO3溶液浸泡,再加入盐酸溶解 | |
| B. | 实验室制氢气,为了加快反应速率,可向稀H2SO4中滴加少量 Cu(NO3)2溶液 | |
| C. | N2(g)+3H2(g)?2NH3(g)△H<0,降低温度时:v(正)增大,v (逆)减小,平衡时氢气转化率增大 | |
| D. | 吸热反应“TiO2(s)+2Cl2(g)═TiCl4(g)+O2(g)”在一定条件下可自发进行,则该反 应的△S<0 |
| A. | 向水中投入一小块金属钠 | B. | 向水中通入二氧化硫气 | ||
| C. | 将水加热煮沸 | D. | 向水中加硫酸钠晶体 |