题目内容

4.金属钛素有“太空金属”、“未来金属”等美誉.工业上,以钛铁矿为原料制备二氧化钛并得到副产品FeSO4•7H2O(绿矾)的工艺流程如下图所示.

已知:TiO2+在一定条件下会发生水解;钛铁矿主要成分为钛酸亚铁(FeTiO3),含有少量SiO2杂质;其中一部分铁元素在钛铁矿处理过程中会转化为+3价.
(1)黑钛液中生成的主要阳离子有TiO2+和Fe2+,写出步骤①化学反应方程式:FeTiO3+2H2SO4═FeSO4+TiOSO4+2H2O;步骤②中,加入铁粉的主要目的是将Fe3+转化为Fe2+并防止Fe2+被氧化.
(2)步骤③中,实现混合物的分离是利用物质的b(填字母序号).
a.熔沸点差异    b.溶解性差异    c.氧化性、还原性差异
(3)步骤②、③、④中,均涉及到的操作是过滤(填操作名称);该操作所需玻璃仪器有烧杯、漏斗、玻璃棒.
(4)请结合化学用语用化学平衡理论解释步骤④中将TiO2+转化为Ti(OH)4的原因:溶液中存在平衡:TiO2++3H2O?Ti(OH)4+2H+,当加入热水稀释、升温后,平衡正向移动,生成Ti(OH)4
(5)可以利用生产过程中的废液与软锰矿(主要成分为MnO2)反应生产硫酸锰(MnSO4,易溶于水),该反应的离子方程式为MnO2+2Fe2++4H+═Mn2++2Fe3++2H2O.

分析 流程分析:第①步加酸溶解生成TiO2+和Fe2+,第②步加铁粉还原Fe3+,过滤除去滤渣,第③步冷却结晶,过滤得到FeSO4•7H2O和含有TiO2+的溶液;第④步调节PH,使TiO2+水解生成Ti(OH)4,过滤得到Ti(OH)4;第⑤步Ti(OH)4受热分解生成化生成TiO2
(1)FeTiO3与H2SO4反应生成FeSO4、TiOSO4和H2O;
(2)步骤③中,利用绿矾与TiOSO4的溶解性的差异实现混合物的分离;
(3)步骤②、③、④中均为分离固液混合物的操作;根据过滤的操作过程和仪器组装来判断用到什么仪器;
(4)升高温度促进水解平衡正移;
(5)生产过程中的废液含有Fe2+,与MnO2发生氧化还原反应.

解答 解:(1)钛铁矿粉主要成分的化学式为FeTiO3,其中铁元素的化合价为+2价,氧元素的化合价为-2价,钛的化合价为+4价,黑钛液中生成的主要阳离子有TiO2+和Fe2+,FeTiO3与H2SO4反应生成FeSO4、TiOSO4和H2O,则其化学反应方程式为:FeTiO3+2H2SO4═FeSO4+TiOSO4+2H2O;亚铁离子易被氧化,则加入铁粉的主要目的是将Fe3+转化为Fe2+并防止Fe2+被氧化;
故答案为:FeTiO3+2H2SO4═FeSO4+TiOSO4+2H2O;将Fe3+转化为Fe2+并防止Fe2+被氧化;
(2)步骤③中,利用绿矾与TiOSO4的溶解性的差异实现混合物的分离,把混合物的溶液冷却结晶得到绿矾固体,
故答案为:b;
(3)步骤②、③、④中均为分离固液混合物的操作,则操作为过滤,灼烧固体一般在坩埚中进行,过滤时需要制作过滤器的漏斗、固定仪器的铁架台、引流用的玻璃棒、承接滤液的烧杯,
故答案为:过滤;烧杯、漏斗、玻璃棒;
(4)TiO2+在一定条件下会发生水解生成Ti(OH)4和氢离子,溶液中存在平衡:TiO2++3H2O?Ti(OH)4+2H+,升高温度促进水解平衡正移,生成Ti(OH)4
故答案为:溶液中存在平衡:TiO2++3H2O?Ti(OH)4+2H+,当加入热水稀释、升温后,平衡正向移动,生成Ti(OH)4
(5)生产过程中的废液含有Fe2+,与MnO2发生氧化还原反应生成硫酸锰,其反应的离子方程式为:MnO2+2Fe2++4H+═Mn2++2Fe3++2H2O,
故答案为:MnO2+2Fe2++4H+═Mn2++2Fe3++2H2O.

点评 本题考查了物质制备流程分析判断,实验基本操作,离子方程式的书写等,考查学生对所学知识的综合应用能力,注意物质分离的流程分析判断,物质性质的应用,题目难度中等.

练习册系列答案
相关题目
14.氮化硼( BN)是一种重要的功能陶瓷材料.以天然硼砂(主要成分Na2B4O7)为起始物,经过一系列反应可以得到BN和火箭高能燃料及有机合成催化剂BF3的过程如下:
(1)写出由B203制备BF3的化学方程式B2O3+3CaF2+3H2SO4=2BF3↑+3CaSO4+3H2O,BF3中,B原子的杂化轨道类型为sp2,BF3分子空间构型为平面正三角形.
(2)在硼、氧、氟、氮中第一电离能由大到小的顺序是(用元素符号表示)F>N>O>B.
(3)已知:硼酸的电离方程式为H3B03+H20?[B(OH)4]-+H+,试依据上述反应写出[Al( OH)4]-的结构式,并推测1mol NH4BF4(氟硼酸铵)中含有2NA个配位键.
(4)由12个硼原子构成如图1的结构单元,硼晶体的熔点为1873℃,则硼晶体的1个结构单元中含有30  个B-B键.

(5)氮化硼(BN)晶体有多种相结构.六方相氮化硼(晶体结构如图2)是通常存在的稳定相可作高温润滑剂.立方相氮化硼(晶体结构如图3)是超硬材料,有优异的耐磨性.
①关于这两种晶体的说法,不正确的是ad(填字母).
a.两种晶体均为分子晶体       
b.两种晶体中的B-N键均为共价键
c.六方相氮化硼层间作用力小,所以质地软
d.立方相氮化硼含有σ键和π键,所以硬度大
②六方相氮化硼晶体内B-N键数与硼原子数之比为3:1,其结构与石墨相似却不导电,原因是立方氮化硼晶体内无自由移动的电子.
③立方相氮化硼晶体中,每个硼原子连接12个六元环.该晶体的天然矿物在青藏高原地下约300km的古地壳中被发现.根据这一矿物形成事实,推断实验室由六方相氮化硼合成立方相氮化硼需要的条件应是高温、高压.
19.对氨基苯磺酸是制取染料和一些药物的重要中间体,可由苯胺磺化得到:
+H2SO4$\stackrel{170-180℃}{→}$+H2O
实验室可利用如图所示装置合成对氨基苯磺酸.实验步骤如下:
①在一个250mL三颈烧瓶中加入10mL苯胺及几粒沸石,将三颈烧瓶放入冷水中冷却,小心地加入18mL浓硫酸.
②将三颈烧瓶置于油浴中缓慢加热至170~180℃,维持此温度2~2.5h.
③将反应液冷却至约50℃后,倒入盛有100mL冷水的烧杯中,玻璃棒不断搅拌,促使晶体析出,抽滤,用少量冷水洗涤,得到的晶体是对氨基苯磺酸粗产品.
④将粗产品用沸水溶解,冷却结晶(若溶液颜色过深,可用活性炭脱色),抽滤,收集产品,晾干(100mL水在20℃时可溶解对氨基苯磺酸1.08g,在100℃时可溶解6.67g).
(1)装置中冷凝管的作用是冷凝回流.
(2)步骤②中采用油浴加热,用油浴加热的优点是反应物受热均匀,便于控制温度.
(3)步骤③用少量冷水洗涤晶体的好处是减少对氨基苯磺酸的损失.
(4)步骤③和④均进行抽滤,在抽滤后停止抽滤时,应注意先拆下连接泵和吸滤瓶的橡皮管,然后关闭水龙头,以防倒吸.
(5)步骤④中有时需要将“粗产品用沸水溶解,冷却结晶,抽滤”的操作进行多次,其目的是提高对氨基苯磺酸的纯度.每次抽滤后均应将母液收集并适当处理,其目的是提高对氨基苯磺酸的产率.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网