题目内容

6.氮、氧、磷、铁是与生命活动密切相关的元素.回答下列问题
(1)P的基态原子最外电子层具有的原子轨道数为9,Fe3+比Fe2+稳定的原因是Fe3+的价电子排布式为3d5,处于半充满状态,结构稳定.
(2)N、O、P三种元素第一电离能最大的是N,电负性最大的是O.
(3)含氮化合物NH4SCN溶液是检验Fe3+的常用试剂,SCN-中C原子的杂化类型为sp,1mol的SCN-中含π键的数目为2NA
(4)某直链多磷酸钠的阴离子呈如图1所示的无限单链状结构,其中磷氧四面体通过共用顶点的氧原子相连,则该多磷酸钠的化学式为NaPO3

(5)FeO、NiO的晶体结构均与NaCl晶体结构相同,其中Fe2+与Ni2+的离子半径分别为7.8×10-2nm、6.9×10-2nm,则熔点FeO<NiO(填“<”、“>”或“=”),原因是FeO和NiO相比,阴离子相同,阳离子所带电荷相同,但亚铁离子半径大于镍离子,所以FeO晶格能小,熔点低.
(6)磷化硼是一种超硬耐磨的涂层材料,其晶胞如图2所示.P原子与B原子的最近距离为a cm,则磷化硼晶胞的边长为$\frac{4a}{\sqrt{3}}$cm.(用含a的代数式表示)

分析 (1)P的基态原子最外电子层具有的原子轨道为1个1s、1个2s、3个2p、1个3s、3个3p;轨道中电子处于半满、全满、全空时该微粒最稳定;
(2)同一周期元素,元素的电负性随着原子序数增大而增大,其第一电离能随着原子序数增大而呈增大趋势,但第IIA族、第VA族第一电离能大于其相邻元素,同一主族元素第一电离能、电负性随着原子序数增大而减小;
(3)含氮化合物NH4SCN溶液是检验Fe3+的常用试剂,SCN-中C原子价层电子对个数是2且不含孤电子对,根据价层电子对互称理论判断C原子的杂化类型,1个SCN-中π键个数为2;
(4)由链状结构可知每个P与3个O形成阴离子,且P的化合价为+5价,以此判断形成的化合物的化学式;
(5)离子晶体熔沸点与晶格能成正比,晶格能与离子比较成反比、与电荷成正比;
(6)原子与B原子的最近距离为a cm,为晶胞体长的$\frac{1}{4}$,晶胞体长等于棱长的$\sqrt{3}$倍.

解答 解:(1)P的基态原子最外电子层具有的原子轨道为1个1s、1个2s、3个2p、1个3s、3个3p,则P的基态原子最外电子层具有的原子轨道数=1+1+3+1+3=9;轨道中电子处于半满、全满、全空时该微粒最稳定,Fe3+的价电子排布式为3d5,处于半充满状态,结构稳定,
故答案为:9;Fe3+的价电子排布式为3d5,处于半充满状态,结构稳定;
(2)同一周期元素,元素的电负性随着原子序数增大而增大,其第一电离能随着原子序数增大而呈增大趋势,但第IIA族、第VA族第一电离能大于其相邻元素,同一主族元素第一电离能、电负性随着原子序数增大而减小,
所以第一电离能大小顺序是N>O>P,电负性大小顺序是O>N>P,
故答案为:N;O;
(3)含氮化合物NH4SCN溶液是检验Fe3+的常用试剂,SCN-中C原子价层电子对个数是2且不含孤电子对,根据价层电子对互称理论判断C原子的杂化类型为sp,1个SCN-中π键个数为2,则1mol的SCN-中含π键的数目为2NA,故答案为:sp;2;
(4)由链状结构可知每个P与3个O形成阴离子,且P的化合价为+5价,则形成的化合物化学式为NaPO3,故答案为:NaPO3
(5)离子晶体熔沸点与晶格能成正比,晶格能与离子比较成反比、与电荷成正比,FeO和NiO相比,阴离子相同,阳离子所带电荷相同,但亚铁离子半径大于镍离子,所以FeO晶格能小,熔点低,
故答案为:<;FeO和NiO相比,阴离子相同,阳离子所带电荷相同,但亚铁离子半径大于镍离子,所以FeO晶格能小,熔点低;
(6)原子与B原子的最近距离为a cm,为晶胞体长的$\frac{1}{4}$,晶胞体长等于棱长的$\sqrt{3}$倍,则晶胞棱长=$\frac{\frac{acm}{\frac{1}{4}}}{\sqrt{3}}$cm=$\frac{4a}{\sqrt{3}}$cm,
故答案为:$\frac{4a}{\sqrt{3}}$.

点评 本题考查物质结构和性质,为高频考点,涉及晶胞计算、原子杂化方式判断、晶体熔沸点高低判断、元素周期律及原子核外电子排布等知识点,侧重考查学生分析判断、计算及空间想象能力,熟练掌握价层电子对互称理论、元素周期律、均摊法等基本理论是解本题关键,注意(6)中P原子与B原子的最近距离与晶胞体长的关系,为易错点.

练习册系列答案
相关题目
1.原子序数依次增大的四种元素A、B、C、D分别处于第1至第4周期,自然界中存在多种A的化合物,B原子核外电子有6种不同的运动状态,B与C可形成正四面体形分子,D的基态原子的最外能层只有一个电子,其他能层均已充满电子.
请回答下列问题:

(1)这四种元素中电负性最大的元素,其基态原子的价电子排布图为3s23p5,第一电离能最小的元素是Cu(填元素符号).
(2)C所在主族前四种元素分别与A形成的化合物,沸点由高到低的顺序是HF>HI>HBr>HCl(填化学式),呈现如此递变规律的原因是HF分子之间形成氢键,使其熔沸点较高,HI、HBr、HCl分子之间只有范德华力,相对分子质量越大,范德华力越大,沸点越高.
(3)B元素可形成多种单质,一种晶体结构如图一所示,其原子的杂化类型为sp2.另一种晶胞如图二所示,若此晶胞中的棱长为a cm,则此晶胞的密度为$\frac{96}{{N}_{A}×{a}^{3}}$g•cm.(保留两位有效数字).(用含a和NA的表达式表示)
(4)D元素形成的单质,其晶体的堆积模型为面心立方最密堆积,D的醋酸盐晶体局部结构如图三,该晶体含有的化学键是①②③(填选项序号).
①极性键 ②非极性键 ③配位键 ④金属键
(5)向D的硫酸盐溶液中滴加过量氨水,观察到的现象是首先形成蓝色沉淀,继续滴加氨水,沉淀溶解,得到深蓝色的透明溶液.请写出上述过程的离子方程式:Cu2++2NH3•H2O═Cu(OH)2↓+2NH4+、Cu(OH)2+4NH3•H2O═[Cu(NH34]2++2OH-+4H2O.
15.工业上可用软锰矿(主要成分是MnO2)和黄铁矿(主要成分是FeS2)为主要原料制备高性能磁性材料碳酸锰(MnCO3).其工业流程如图1:

已知:MnCO3难溶于水、乙醇,潮湿时易被空气氧化,100℃开始分解.回答下列问题:
(1)净化工序的目的是除去溶液中的Cu2+、Ca2+等杂质.若测得滤液中c(F-)=0.01mol•L-1,滤液中残留的c(Ca2+)=1.46×10-6 mol/L〔已知:Ksp(CaF2)=1.46×10-10
(2)沉锰工序中,298K、c(Mn2+)为1.05mol•L-1时,实验测得MnCO3的产率与溶液pH、反应时间的关系如图所示.根据图2中信息得出的结论是pH等于7.0时反应速率最快,且MnCO3的产率最高.
(3)从沉锰工序中得到纯净MnCO3的操作方法是:过滤、先水洗2-3次、再用乙醇洗涤、低温干燥(或低于100℃干燥).
(4)为测定某软锰矿中二氧化锰的质量分数,准确称量1.20g软锰矿样品,加入2.68g草酸钠固体,再加入足量的稀硫酸并加热(杂质不参加反应),充分反应后冷却,将所得溶液转移到250mL容量瓶中用蒸馏水稀释至刻度,从中取出25.0mL,用0.0200mol•L-1高锰酸钾溶液进行滴定,当滴入20.0mL溶液时恰好完全反应.
已知高锰酸钾、二氧化锰在酸性条件下均能将草酸钠(Na2C2O4)氧化:
2MnO4-+5C2O42-+16H+═2Mn2++10CO2↑+8H2O
MnO2+C2O42-+4H+═Mn2++2CO2↑+2H2O
求该软锰矿中二氧化锰的质量分数72.5%(写出计算过程).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网