嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.

已知:如图1,在四边形ABCD中,BC=AD,AB=

求证:四边形ABCD是 四边形.

(1)在方框中填空,以补全已知和求证;

(2)按嘉淇同学的思路写出证明过程;

(3)用文字叙述所证命题的逆命题.

(1)见解析;(2)见解析 【解析】试题分析:(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,即可得到结论; (2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形; (3)把命题“两组对边分别相等的四边形是平行四...

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为点F,连接DF.

(1)试说明AC=EF;

(2)求证:四边形ADFE是平行四边形.

(1)证明见解析(2)证明见解析 【解析】证明:(1)∵△ABE是等边三角形,EF⊥AB, ∴∠AEF =∠AEB= 30º,AE=AB,∠EFA= 90º. ∵∠ACB= 90º,∠BAC= 30º, ∴∠EFA=∠ACB,∠AEF=∠BAC. ∴△AEF≌△BAC. ∴AC = EF. (2)∵△ACD是等边三角形, ∴AC = AD,∠DAC=...

已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.

(1)求证:△BCG≌△DCE;

(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由。

(1)答案见解析;(2)答案见解析 【解析】试题分析:(1)由正方形ABCD,得BC=CD,∠BCD=∠DCE=90°,又CG=CE,所以△BCG≌△DCE(SAS). (2)由(1)得BG=DE,又由旋转的性质知AE′=CE=CG,所以BE′=DG,从而证得四边形E′BGD为平行四边形. (1)证明:∵四边形ABCD是正方形, ∴BC=CD,∠BCD=90°. ∵∠...

我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:

(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;

(2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.

(1)梯形、矩形、正方形;(2)答案见解析 【解析】试题分析:(1)等腰梯形、矩形、正方形,任选两个即可; (2)等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和大于或等于一条对角线的长.分两种情况证明:当BC与CE不在同一条直线上时,60°角所对的两边之和大于其中一条对角线的长;当BC与CE在同一条直线上时60°角所对的两边之和等于其中一条对角线的长. ...

如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.

            

(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;

(2)判断四边形ABDF是怎样的四边形,并说明理由;

(3)若AB=6,BD=2DC,求四边形ABEF的面积..

(1)见解析;(2)平行四边形;(3) 【解析】试题分析:(1)从图上及已知条件容易看出△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF.判定两个三角形全等时,必须有边的参与,所以此题的关键是找出相等的边. (2)由(1)的结论容易证明AB∥DF,BD∥AF,两组对边分别平行的四边形是平行四边形. (3)EF∥AB,EF≠AB,四边形ABEF是梯形,只要求出此梯形的面积...

下列说法正确的是( )

A. 两个全等的三角形一定关于某条直线对称 B. 关于某条直线的对称的两个三角形一定全等

C. 直角三角形是轴对称图形 D. 锐角三角形都是轴对称图形

B 【解析】A.根据轴对称的定义,全等三角形不一定关于某直线对称,故错误; B. 根据轴对称的性质,关于某条直线的对称的两个三角形一定全等,故正确; C.直角三角形中,等腰直角三角形是轴对称图形,其它一般的直角三角形不是,故错误; D.锐角三角形不一定是轴对称图形,如三个角分别是50°、60°、70°的三角形就不是轴对称图形,故错误. 故选B.

下列说法中正确的有( )

①角的两边关于角平分线对称; ②两点关于连结它的线段的中垂线对称

③成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称

④到直线l距离相等的点关于l对称

A. 1个 B. 2个 C. 3个 D. 4个

B 【解析】①∵应该为角的两边关于“角平分线所在直线”对称,故不正确; ②“两点关于连结它的线段的中垂线对称”正确; ③“成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称”正确; ④∵到直线l距离相等的点可以在l的同一侧,故不正确; ∴②和③正确. 故选B.

下列说法错误的是( )

A. 等边三角形是轴对称图形

B. 轴对称图形的对应边相等,对应角相等

C. 成轴对称的两条线段必在对称轴一侧

D. 成轴对称的两个图形对应点的连线被对称轴垂直平分

C 【解析】A. 由等边三角形的性质知,等边三角形是轴对称图形,正确; B. 由轴对称的性质知,轴对称图形的对应边相等,对应角相等,正确; C. 成轴对称的两条线段必在对称轴两侧,故错误; D. 由轴对称的性质知,成轴对称的两个图形对应点的连线被对称轴垂直平分,正确; 故选C.

观察下列平面图形:其中属于轴对称图形的有( )

A. 1个 B. 2个 C. 3个 D. 4个

C 【解析】根据轴对称图形的定义可知,前三个图形分别有5条、5条、3条对称轴,最后一个图形三角形内的图案没有对称轴. 故选C.

如图所示,在桌面上坚直放置两块镜面相对的平面镜,在两镜之间放一个小凳,那么在两镜中共可得到小凳的像( )

A. 2个 B. 4个 C. 16个 D. 无数个

D 【解析】∵两块镜面相对, ∴在每一块镜面中,都能有对方镜面的图像, ∴小凳在每一个镜面中都有图像. ∵每一个面中的小凳都在对面镜子中有图像, ∴循环往复,图像无数. 故选D
 0  322115  322123  322129  322133  322139  322141  322145  322151  322153  322159  322165  322169  322171  322175  322181  322183  322189  322193  322195  322199  322201  322205  322207  322209  322210  322211  322213  322214  322215  322217  322219  322223  322225  322229  322231  322235  322241  322243  322249  322253  322255  322259  322265  322271  322273  322279  322283  322285  322291  322295  322301  322309  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网