嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在四边形ABCD中,BC=AD,AB=
![]()
求证:四边形ABCD是 四边形.
(1)在方框中填空,以补全已知和求证;
(2)按嘉淇同学的思路写出证明过程;
(3)用文字叙述所证命题的逆命题.
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为点F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
![]()
已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.
![]()
(1)求证:△BCG≌△DCE;
(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由。
我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:
(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.
如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
![]()
(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;
(2)判断四边形ABDF是怎样的四边形,并说明理由;
(3)若AB=6,BD=2DC,求四边形ABEF的面积..
下列说法正确的是( )
A. 两个全等的三角形一定关于某条直线对称 B. 关于某条直线的对称的两个三角形一定全等
C. 直角三角形是轴对称图形 D. 锐角三角形都是轴对称图形
下列说法中正确的有( )
①角的两边关于角平分线对称; ②两点关于连结它的线段的中垂线对称
③成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称
④到直线l距离相等的点关于l对称
A. 1个 B. 2个 C. 3个 D. 4个
下列说法错误的是( )
A. 等边三角形是轴对称图形
B. 轴对称图形的对应边相等,对应角相等
C. 成轴对称的两条线段必在对称轴一侧
D. 成轴对称的两个图形对应点的连线被对称轴垂直平分
观察下列平面图形:其中属于轴对称图形的有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
如图所示,在桌面上坚直放置两块镜面相对的平面镜,在两镜之间放一个小凳,那么在两镜中共可得到小凳的像( )
![]()
A. 2个 B. 4个 C. 16个 D. 无数个