1.如果$\frac{a}{15}$是真分数,$\frac{a}{12}$是假分数,那么满足条件的正整数a有( )
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
17.
某校学生准备调查七年级学生参加“A.武术类”、“B.书画类”、“C.棋牌类”、“D.器乐类”四类校本课程的人数.
(1)确定调查方式时,甲同学说:“我到七年级(1)班调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到七年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.
(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.
请你根据以上图表提供的信息解答下列问题:
①求a=100,b=0.15;
②在扇形统计图中,器乐类所对应扇形的圆心角的度数是144°;
③若该校七年级有学生560人,请你估计大约有多少学生参加武术类校本课程.
(3)甲、乙2人对这四类课程的喜爱撑多久基本相同,决定分别从中任意选择1类参加,求甲、乙2人选择同1类课程的概率.
(1)确定调查方式时,甲同学说:“我到七年级(1)班调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到七年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.
(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.
| 类别 | 频数(人数) | 频率 |
| 武术类 | 0.25 | |
| 书画类 | 20 | 0.20 |
| 棋牌类 | 15 | b |
| 器乐类 | ||
| 合计 | a | 1.00 |
①求a=100,b=0.15;
②在扇形统计图中,器乐类所对应扇形的圆心角的度数是144°;
③若该校七年级有学生560人,请你估计大约有多少学生参加武术类校本课程.
(3)甲、乙2人对这四类课程的喜爱撑多久基本相同,决定分别从中任意选择1类参加,求甲、乙2人选择同1类课程的概率.
16.在一次概率实验中,用计算机从3,4,5,x这四个数中,每次同时随机抽取两个数,计算两数之和并记录,多次重复实验的数据如下表:
解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为8”频率将稳定在它的概率附近.估计出现“和为8”的概率是0.33.
(2)当x值取6,求两数之和为8的概率.
0 297741 297749 297755 297759 297765 297767 297771 297777 297779 297785 297791 297795 297797 297801 297807 297809 297815 297819 297821 297825 297827 297831 297833 297835 297836 297837 297839 297840 297841 297843 297845 297849 297851 297855 297857 297861 297867 297869 297875 297879 297881 297885 297891 297897 297899 297905 297909 297911 297917 297921 297927 297935 366461
| 实验总次数 | 10 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
| “和为8”出现频数 | 2 | 10 | 13 | 24 | 30 | 37 | 58 | 82 | 110 | 150 |
| “和为8”出现频率 | 0.20 | 0.50 | 0.43 | 0.38 | 0.33 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
(1)如果实验继续进行下去,根据上表数据,出现“和为8”频率将稳定在它的概率附近.估计出现“和为8”的概率是0.33.
(2)当x值取6,求两数之和为8的概率.