题目内容

15.如图,在△ABC中,AB=AC,以AB为直径的半圆O分别交AC、BC于点D、E.
(1)求证:点E是BC的中点.
(2)若∠BOD=80°,求∠CED的度数.

分析 (1)连接AE,根据直径所对的圆周角为直角得到∠AEB=90°,再根据等腰三角形的性质即可得到结论;
(2)根据圆周角定理得到∠DAB=$\frac{1}{2}$∠BOD=40°,再根据圆的内接四边形的对角互补得到∠DAB+∠DEB=180°,而CBED+∠DEB=180°,则∠CED=∠DAB.

解答 (1)证明:连接AE,
∵AB为⊙O的直径,
∴∠AEB=90°,即AE⊥BC,
∵AB=AC,
∴BE=CE,
即点E为BC的中点;
(2)解:∵∠BOD=80°,
∴∠DAB=$\frac{1}{2}$∠BOD=40°,
∵∠DAB+∠DEB=180°,∠CED+∠DEB=180°,
∴∠CED=∠DAB=40°.

点评 本题考查了在同圆或等圆中,同弧或等弧所对的圆周角的度数等于它所对的圆心角度数的一半;直径所对的圆周角为直角;圆的内接四边形的对角互补;等腰三角形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网