13.设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,记作y=f(x).在函数y=f(x)中,当自变量x=a时,相应的函数值y可以表示为f(a).
例如:函数f(x)=x2-2x-3,当x=4时,f(4)=42-2×4-3=5在平面直角坐标系xOy中,对于函数的零点给出如下定义:
如果函数y=f(x)在a≤x≤b的范围内对应的图象是一条连续不断的曲线,并且f(a).f(b)<0,那么函数y=f(x)在a≤x≤b的范围内有零点,即存在c(a≤c≤b),使f(c)=0,则c叫做这个函数的零点,c也是方程f(x)=0在a≤x≤b范围内的根.
例如:二次函数f(x)=x2-2x-3的图象如图1所示.
观察可知:f(-2)>0,f(1)<0,则f(-2).f(1)<0.所以函数f(x)=x2-2x-3在-2≤x≤1范围内有零点.由于f(-1)=0,所以,-1是f(x)=x2-2x-3的零点,-1也是方程x2-2x-3=0的根.
(1)观察函数y1=f(x)的图象2,回答下列问题:
①f(a)•f(b)<0(“<”“>”或“=”)
②在a≤x≤b范围内y1=f(x)的零点的个数是1.
(2)已知函数y2=f(x)=-$\sqrt{3}{x^2}-2\sqrt{3}(a-1)x-\sqrt{3}({a^2}-2a)$的零点为x1,x2,且x1<1<x2
①求零点为x1,x2(用a表示);
②在平面直角坐标xOy中,在x轴上A,B两点表示的数是零点x1,x2,点 P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,若a是整数,求抛物线y2的表达式并直接写出线段PQ长的取值范围.
 0  282976  282984  282990  282994  283000  283002  283006  283012  283014  283020  283026  283030  283032  283036  283042  283044  283050  283054  283056  283060  283062  283066  283068  283070  283071  283072  283074  283075  283076  283078  283080  283084  283086  283090  283092  283096  283102  283104  283110  283114  283116  283120  283126  283132  283134  283140  283144  283146  283152  283156  283162  283170  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网