题目内容
10.(1)当t=$\frac{60}{23}$s时,△BPQ为等腰三角形;
(2)当BD平分PQ时,求t的值;
(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.
探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.
分析 (1)由运动得出BP=BQ,求出t,即可;
(2)由PM∥AD,得出$\frac{PM}{AD}=\frac{BP}{AB}$,表示出PM,从而求出t,即可;
(3)先判断出△AEP≌△FEG,表示出BH,HQ,CQ,再由勾股定理计算即可.
解答 解:(1)当BP=BQ时,60-3t=20t,
∴t=$\frac{60}{23}$,
(2)如图1,![]()
过P作PM∥AD,
∴$\frac{PM}{AD}=\frac{BP}{AB}$,
∴$\frac{PM}{90}=\frac{60-3t}{60}$,
∴PM=90-$\frac{9}{2}$t,
∵PN=NQ,PM=BQ,
∴90-$\frac{9}{2}$t=20t,
∴t=$\frac{180}{49}$,
(3)如图2,![]()
作GH⊥BQ,
∴PB=PF=60-3t,
∵AE=EF,∠AEP=∠FEG,∠A=∠F,
∴△AEP≌△FEG,
∴PE=EG,FG=AP,
∴AG=PF=60-3t=BH,
∴HQ=BQ-BH=20t-(60-3t)=23t-60,
GQ=FQ-FG=BQ-AP=17t,
根据勾股定理得,602=(17t)2-(23t-60)2
∴t1=4,t2=7.5(舍),
∴t=4
∴存在t=4,使AE=EF.
点评 此题是四边形综合题,主要考查了平行线分线段成比例定理,全等三角形的性质和判定,勾股定理,用时间t表示线段是解本题的关键.
练习册系列答案
相关题目
20.若2x3-ax2-5x+5=(2x2+ax-1)(x-b)+3,其中a,b为整数,则a+b的值为( )
| A. | -4 | B. | -2 | C. | 0 | D. | 4 |