题目内容

如图所示,已知在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交AB于E,交BC于F,BF=5cm,求FC.
考点:含30度角的直角三角形,线段垂直平分线的性质,等腰三角形的性质
专题:
分析:连接AF,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF,再根据等腰三角形两底角相等求出∠B=∠C=30°,∠BAF=∠B=30°,然后求出∠CAF=90°,再根据直角三角形30°角所对的直角边等于斜边的一半可得FC=2AF.
解答:解:如图,连接AF,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=
1
2
(180°-120°)=30°,
∵EF为AB的垂直平分线,
∴AF=BF,
∴∠BAF=∠B=30°,
∴∠CAF=120°-30°=90°,
∴FC=2AF=2×5=10cm.
点评:本题考查了直角三角形30°角所对的直角边等于斜边的一半,线段垂直平分线上的点到两端点的距离相等的性质,等腰三角形两底角相等的性质,熟记各性质并作辅助线构造出直角三角形是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网