题目内容

如图,在四边形ABCD中,AD∥BC,∠A=90°,BE=AD,CE⊥BD,垂足为E.
(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度数.
考点:全等三角形的判定与性质
专题:
分析:(1)因为这两个三角形是直角三角形,BC=BD,因为AD∥BC,还能推出∠ADB=∠EBC,从而能证明:△ABD≌△ECB.
(2)因为∠DBC=50°,BC=BD,可求出∠BDC的度数,进而求出∠DCE的度数.
解答:(1)证明:∵AD∥BC,
∴∠ADB=∠EBC.
∵CE⊥BD,∠A=90°,
∴∠A=∠CEB,
在△ABD和△ECB中,
∠ADB=∠EBC
∠A=∠CEB
BE=AD

∴△ABD≌△ECB(AAS);

(2)解:∵△ABD≌△ECB,
∴BC=BD,
∵∠DBC=50°,
∴∠EDC=
1
2
(180°-50°)=65°,
又∵CE⊥BD,
∴∠CED=90°,
∴∠DCE=90°-∠EDC=90°-65°=25°.
点评:本题考查了全等三角形的判定和性质,以及直角梯形的性质,直角梯形有两个角是直角,有一组对边平行.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网