ÌâÄ¿ÄÚÈÝ
5£®£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÒÔµãAΪԲÐÄ£¬×÷ÓÚÖ±ÏßBCÏàÇеġÑA£¬Çó¡ÑAµÄÃæ»ý£»
£¨3£©½«Ö±ÏßBCÏòÏÂÆ½ÒÆn¸öµ¥Î»ºóÓëÅ×ÎïÏß½»ÓÚµãM¡¢N£¬ÇÒÏß¶ÎMN=2CB£¬ÇóÖ±ÏßMNµÄ½âÎöʽ¼°Æ½ÒƾàÀ룮
¸½£ºÔĶÁ²ÄÁÏ
·¨¹ú¸¥ÀÊË÷ÍߕΤ´ï×îÔç·¢ÏÖÒ»Ôª¶þ´Î·½³ÌÖиùÓëϵÊýµÄ¹ØÏµÎª£ºÁ½¸ùÖ®ºÍµÈÓÚÒ»´ÎÏîϵÊýÓë¶þ´ÎÏîϵÊýÖ®±ÈµÄÏà·´Êý£¬Á½¸ùÖ®»ýµÈÓÚ³£ÊýÏîÓð¶þ´ÎÏîϵÊýÖ®±È£¬ÈËÃdzÆÖ®ÎªÎ¤´ï¶¨Àí£®
¼´£ºÉèÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0µÄÁ½¸ùΪx1¡¢x2£¬Ôò£ºx1+x2=-$\frac{b}{a}$£¬x1•x2=$\frac{c}{a}$ÄÜÁé»îÔËÓÃΤ´ï¶¨Àí£¬ÓÐʱ¿ÉÒÔʹ½âÌâ¸üΪ¼òµ¥£®
·ÖÎö £¨1£©Éè½»µãʽy=a£¨x-1£©£¨x-4£©£¬¼´y=ax2-5ax+4a£¬È»ºóÀûÓÃ4a=-2Çó³öa¼´¿ÉµÃµ½Å×ÎïÏß½âÎöʽ£»
£¨2£©×÷AD¡ÍBCÓÚD£¬Èçͼ£¬ÏÈÈ·¶¨C£¨0£¬-2£©£¬¼ÆËã³öBC=2$\sqrt{5}$£¬ÔÙÖ¤Ã÷Rt¡÷BAD¡×Rt¡÷BCO£¬ÀûÓÃÏàËÆ±È¿É¼ÆËã³öAD=$\frac{3\sqrt{5}}{5}$£¬È»ºóÀûÓÃÇÐÏßµÄÐÔÖʵõ½Ô²µÄ°ë¾¶ÎªAD£¬ÔÙÀûÓÃÔ²µÄÃæ»ý¹«Ê½Çó½â£»
£¨3£©ÏÈÀûÓôý¶¨ÏµÊý·¨È·¶¨Ö±ÏßBCµÄ½âÎöʽΪy=$\frac{1}{2}$x-2£¬Ôò¿ÉÉèÖ±ÏßMNµÄ½âÎöʽΪy=$\frac{1}{2}$x+t£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÀûÓÃÁ½º¯ÊýµÄ½»µãÎÊÌâµÃµ½x1¡¢x2Ϊ·½³Ì-$\frac{1}{2}$x2+$\frac{5}{2}$x-2=$\frac{1}{2}$x+2tµÄÁ½¸ù£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµµÃx1+x2=4£¬x1•x2=2t+4£¬Ôòy1-y2=$\frac{1}{2}$£¨x1-x2£©£¬½Ó×ÅÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽºÍÍêȫƽ·½¹«Ê½µÃµ½MN=$\sqrt{\frac{5}{4}[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{-10t}$£¬ËùÒÔ$\sqrt{-10t}$=4$\sqrt{5}$£¬½â·½³ÌµÃµ½tµÄÖµ£¬´Ó¶øµÃµ½Ö±ÏßMNµÄ½âÎöʽ£¬È»ºóÀûÓÃÖ±Ï߯½ÒƵĹæÂÉÈ·¶¨Æ½ÒƵľàÀ룮
½â´ð ½â£º£¨1£©ÉèÅ×ÎïÏß½âÎöʽΪy=a£¨x-1£©£¨x-4£©£¬
¼´y=ax2-5ax+4a£¬
¡à4a=-2£¬½âµÃa=-$\frac{1}{2}$£¬
¡àÅ×ÎïÏß½âÎöʽΪy=-$\frac{1}{2}$x2+$\frac{5}{2}$x-2£»
£¨2£©×÷AD¡ÍBCÓÚD£¬Èçͼ£¬
µ±x=0ʱ£¬y=-$\frac{1}{2}$x2+$\frac{5}{2}$x-2=-2£¬ÔòC£¨0£¬-2£©£¬
BC=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$£»
¡ß¡ÏABD=¡ÏCBO£¬
¡àRt¡÷BAD¡×Rt¡÷BCO£¬
¡à$\frac{AD}{OC}$=$\frac{AB}{BC}$£¬¼´$\frac{AD}{2}$=$\frac{2}{2\sqrt{5}}$£¬
¡àAD=$\frac{3\sqrt{5}}{5}$£¬
¡ßÖ±ÏßBCÏàÇеġÑA£¬
¡àADΪ¡ÑAµÄ°ë¾¶£¬
¡à¡ÑAµÄÃæ»ý=¦Ð•£¨$\frac{3\sqrt{5}}{5}$£©2=$\frac{9}{5}$¦Ð£»
£¨3£©ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+m£¬
°ÑB£¨4£¬0£©£¬C£¨0£¬-2£©´úÈëµÃ$\left\{\begin{array}{l}{4k+m=0}\\{m=-2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{m=-2}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=$\frac{1}{2}$x-2£¬
ÉèÖ±ÏßMNµÄ½âÎöʽΪy=$\frac{1}{2}$x+t£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôòx1¡¢x2Ϊ·½³Ì-$\frac{1}{2}$x2+$\frac{5}{2}$x-2=$\frac{1}{2}$x+2tµÄÁ½¸ù£¬
·½³ÌÕûÀíΪx2-4x+2t+4=0£¬
¡àx1+x2=4£¬x1•x2=2t+4£¬
¡ßy1-y2=$\frac{1}{2}$x1+t-£¨$\frac{1}{2}$x2+t£©=$\frac{1}{2}$£¨x1-x2£©£¬
¡àMN=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}}$=$\sqrt{\frac{5}{4}£¨{x}_{1}-{x}_{2}£©^{2}}$=$\sqrt{\frac{5}{4}[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{\frac{5}{4}[16-4£¨2t+4£©]}$=$\sqrt{-10t}$£¬
¡ßMN=2CB£¬
¡à$\sqrt{-10t}$=4$\sqrt{5}$£¬½âµÃt=-8£¬
¡àÖ±ÏßMNµÄ½âÎöʽΪy=$\frac{1}{2}$x-8£¬
¡à½«Ö±ÏßBCÏòÏÂÆ½ÒÆ6¸öµ¥Î»µÃµ½Ö±ÏßMN£¬¼´Æ½ÒƵľàÀëΪ6£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ºÍÇÐÏßµÄÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýºÍ¶þ´Îº¯Êý½âÎöʽ£¬»áͨ¹ý½â·½³Ì×éÇóÁ½º¯ÊýµÄ½»µã×ø±ê£»ÄÜÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽºÍÏàËÆ±È¼ÆËãÏ߶εij¤£»Áé»îÓ¦ÓøùÓëϵÊýµÄ¹ØÏµ£®