题目内容
13.分析 先根据折叠的性质得到∠DBC=∠DBE,再由AD∥BC得到∠DBC=∠BDE,则∠DBE=∠BDE,于是可判断BE=DE设AE=x,则DE=BE=8-x,然后在Rt△ABE中利用勾股定理得到x2+62=(8-x)2,再解方程即可.
解答 解:∵△BDC′是由△BDC折叠得到,
∴∠DBC=∠DBE,
∵AD∥BC,
∴∠DBC=∠BDE,
∴∠DBE=∠BDE,
∴BE=DE
设AE=x,则DE=AD-AE=8-x,BE=8-x,
在Rt△ABE中,∵AE2+AB2=BE2,
∴x2+62=(8-x)2,解得x=$\frac{7}{4}$,
即AE的长为$\frac{7}{4}$.
点评 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
练习册系列答案
相关题目
2.
矩形ABCD中,边长AB=4,边BC=2,M、N分别是边BC、CD上的两个动点,且始终保持AM⊥MN.则CN的最大值为( )
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | 2 |
2.在Rt△ABC中,∠C=90°,AB=4,BC=3,则sinA的值是( )
| A. | $\frac{\sqrt{7}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |