题目内容

11.下列是三元一次方程组$\left\{\begin{array}{l}{x+2y+z=16}\\{2x=3y=6z}\end{array}\right.$的解的是(  )
A.$\left\{\begin{array}{l}{x=1}\\{y=3}\\{z=5}\end{array}\right.$B.$\left\{\begin{array}{l}{x=6}\\{y=3}\\{z=2}\end{array}\right.$C.$\left\{\begin{array}{l}{x=6}\\{y=4}\\{z=2}\end{array}\right.$D.$\left\{\begin{array}{l}{x=4}\\{y=5}\\{z=6}\end{array}\right.$

分析 方程组整理后,利用代入消元法求出解即可.

解答 解:方程组整理得:$\left\{\begin{array}{l}{x+2y+z=16①}\\{2x=3y②}\\{3y=6z③}\end{array}\right.$,
由②得:x=$\frac{3}{2}$y,由③得:z=$\frac{1}{2}$y,
代入①得:$\frac{3}{2}$y+2y+$\frac{1}{2}$y=16,即y=4,
把y=4代入得:x=6,z=2,
则方程组的解为$\left\{\begin{array}{l}{x=6}\\{y=4}\\{z=2}\end{array}\right.$.
故选C.

点评 此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网