题目内容

19.在由6个边长为1的小正方形组成的方格中:
(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;
(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明)

分析 (1)如图(1),根据勾股定理,判断出AB2+BC2=AC2,即可推得△ABC是直角三角形,据此判断出AB与BC的关系,并说明理由即可.
(2)如图(2),根据勾股定理,判断出AB2+BC2=AC2,即可推得△ABC是等腰直角三角形,据此求出∠α+∠β的度数是多少即可.

解答 解:(1)如图(1),连接AC,
由勾股定理得,AB2=12+22=5,
BC2=12+22=5,
AC2=12+32=10,
∴AB2+BC2=AC2,AB=BC,
∴△ABC是直角三角形,∠ABC=90°,
∴AB⊥BC
∴AB与BC是垂直且相等. 

(2)∠α+∠β=45°.
证明:如图(2),
由勾股定理得,AB2=12+22=5,
BC2=12+22=5,
AC2=12+32=10,
∴AB2+BC2=AC2
∴△ABC是直角三角形,
∵AB=BC,
∴△ABC是等腰直角三角形,
∴∠α+∠β=45°.

点评 此题主要考查了作图-应用与设计作图,以及勾股定理的应用,要熟练掌握.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网