题目内容
4.某超市在一楼至二楼间安装了一自动扶梯,以均匀的速度向上行驶,张明与高丽同时从自动扶梯上走到二楼(扶梯本身也在行驶),如果张明与高丽都在均速运动,且张明每分钟走动的级数是高丽的2倍,已知张明走了27级到达扶梯顶部,而高丽走了18级到达顶部(设张明、高丽每次只跨一级台阶),则扶梯露在外面的部分有54级.分析 如果设女孩上梯速度为x级/分,自动扶梯的速度为y级/分,扶梯露在外面的部分有S级.题中有两个等量关系,男孩走27级的时间等于扶梯走(S-27)级的时间;女孩走18级的时间等于扶梯走(S-18)级的时间,据此列出方程组,求出S的值即可.
解答 解:设女孩上梯速度为x级/分,自动扶梯的速度为y级/分,扶梯露在外面的部分有S级,则男孩上梯的速度为2x级/分.
由题意,有$\left\{\begin{array}{l}{\frac{27}{2x}=\frac{S+27}{y}}\\{\frac{18}{x}=\frac{S-18}{y}}\end{array}\right.$,
解得S=54.
答:扶梯露在外面的部分有54级.
故答案为:54.
点评 本题考查应用类问题,分式方程在行程问题中的应用,分析题意,找到合适的等量关系是解决问题的关键.本题属于竞赛题型,有一定难度.难点在于自动扶梯在上升,具有一定的速度,同时甲、乙也在上楼梯,变化量较多.解题时要善于抓住不变量,只有不变量才是列方程的依据.另外,本题求解时设的未知数x、y,只设不求,这种方法在解复杂的应用题时常用来帮助分析数量关系,便于解题.
练习册系列答案
相关题目
14.某人下午6点到7点之间外出购物,出发和回来时发现表上的时针和分针的夹角都为110°,此人外出购物共用了( )分钟.
| A. | 16 | B. | 20 | C. | 32 | D. | 40 |
18.
如图一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得影子DE的长刚好是自己的身高,已知小颖的身高为1.5米,那么路灯A的高度AB为( )
| A. | 8米 | B. | 6米 | C. | 4.5米 | D. | 3米 |
14.
如图,正方形ABCD的边长为2,其面积记作S1,以CD为斜边作等腰直角三角形,以该等腰三角形的一条直角边为边向外作正方形,其面积记作S2,…,按照此规律继续下去,则S2017的值为( )
| A. | ($\frac{\sqrt{2}}{2}$)2014 | B. | ($\frac{1}{2}$)2014 | C. | ($\frac{\sqrt{2}}{2}$)2015 | D. | ($\frac{1}{2}$)2015 |