题目内容
3.【解】∵EF∥AD(已知)
∴∠2=∠3(两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠1=∠3(等式性质或等量代换)
∴AB∥DG(内错角相等,两直线平行)
∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补)
又∵∠BAC=70°(已知)
∴∠AGD=110°(等式性质)
分析 先根据平行线的性质以及等量代换,即可得出∠1=∠3,再判定AB∥DG,再根据两直线平行,同旁内角互补,即可得到∠AGD的度数.
解答 解:∵EF∥AD(已知)
∴∠2=∠3(两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠1=∠3(等式性质或等量代换)
∴AB∥DG(内错角相等,两直线平行)
∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补)
又∵∠BAC=70°(已知)
∴∠AGD=110°(等式性质)
故答案为:∠3,两直线平行,同位角相等;DG,内错角相等,两直线平行;∠AGD,两直线平行,同旁内角互补.
点评 本题主要考查了平行线的性质与判定的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.
练习册系列答案
相关题目
14.
如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB的度数是( )
| A. | 26° | B. | 44° | C. | 46° | D. | 66° |