题目内容

1.如图,点P1,P2是反比例函数图象y=$\frac{4}{x}$上任意两点,过点P1作y轴的平行线,与过点P2作x轴的平行线相交于点N,若点N(m,n)恰好在另一个反比例函数y=$\frac{k}{x}$(k>0,x>0)的图象上,且NP1•NP2=2,则k的值为(  )
A.$\frac{1}{2}$或2B.$\frac{1}{2}$或8C.2或6D.2或8

分析 由P1N∥y轴,P2N∥x轴得到P1的横坐标为m,P2的纵坐标为n,再根据反比例函数图象上点的坐标特征得P1(m,$\frac{4}{m}$),P2($\frac{4}{n}$,n),则NP1=$\frac{4}{m}$-n,NP2=$\frac{4}{n}$-m,所以($\frac{4}{m}$-n)($\frac{4}{n}$-m)=2,解关于mn的一元二次方程得mn=2或mn=8,加上点N(m,n)在反比例函数y=$\frac{k}{x}$的图象上,则k=mn,于是可得k=2或8.

解答 解:∵P1N∥y轴,P2N∥x轴,
∴P1的横坐标为m,P2的纵坐标为n,
而点P1,P2是反比例函数图象y=$\frac{4}{x}$上任意两点,
∴P1(m,$\frac{4}{m}$),P2($\frac{4}{n}$,n),
∴NP1=$\frac{4}{m}$-n,NP2=$\frac{4}{n}$-m,
∴($\frac{4}{m}$-n)($\frac{4}{n}$-m)=2,
整理得(mn)2-10mn+16=0,解得mn=2或mn=8,
∵点N(m,n)在反比例函数y=$\frac{k}{x}$的图象上,
∴k=mn,
∴k=2或8.
故选D.

点评 本题考查了反比例函数图象上点的坐标特征:反比例函数y=$\frac{k}{x}$(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网