题目内容
13.| A. | 5 | B. | 6 | C. | 9 | D. | 13 |
分析 首先证明△ABE≌△BCF,推出AE=BF,EB=CF,再利用勾股定理求出AB2,即可解决问题.
解答
解:∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC,
∵∠ABE+∠CBF=90°,∠ABE+∠BAE=90°,
∴∠BAE=∠CBF,
∵AE⊥EF,CF⊥EF,
∴∠AEB=∠CFB=90°,
在△ABE和△BCF中,
$\left\{\begin{array}{l}{∠BAE=∠CBF}\\{∠AEB=∠CFB}\\{AB=BC}\end{array}\right.$,
∴△ABE≌△BCF,
∴AE=BF=2,EB=CF=3,
∴AB2=AE2+EB2=22+32=13,
∴正方形ABCD面积=AB2=13.
故选D.
点评 本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形,灵活应用勾股定理解决问题,属于中考常考题型.
练习册系列答案
相关题目
1.
如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是( )
| A. | 80° | B. | 82° | C. | 83° | D. | 85° |
8.
如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为3m,梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于4m,同时梯子的顶端B下降至B′,则BB′的长为1m(梯子AB的长为5m).
5.
如图,直线a上有三个正方形Ⅰ,Ⅱ,Ⅲ.如果正方形Ⅰ,Ⅱ的面积分别是5和11,那么正方形Ⅲ的面积是( )
| A. | 55 | B. | 16 | C. | 6 | D. | 2.2 |