ÌâÄ¿ÄÚÈÝ

13£®Èçͼ£¬ÒÑÖªÖ±Ïßy=mx+nÓë·´±ÈÀýº¯Êýy=$\frac{k}{x}$½»ÓÚA¡¢BÁ½µã£¬µãAÔÚµãBµÄ×ó±ß£¬ÓëxÖá¡¢yÖá·Ö±ð½»µãC¡¢µãD£¬AE¡ÍxÖáÓÚE£¬BF¡ÍyÖáÓÚF£®
£¨1£©Èôm=k£¬n=0£¬ÇóA¡¢B£»Á½µãµÄ×ø±ê£»
£¨2£©Èçͼ1£¬ÈôA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬Ð´³öy1+y2ÓënµÄ´óС¹ØÏµ£¬²¢Ö¤Ã÷£»
£¨3£©Èçͼ2£¬M¡¢N·Ö±ðΪ·´±ÈÀýº¯Êýy=$\frac{b}{x}$ͼÏóÉϵĵ㣬AM¡ÎMN¡ÎxÖᣮÈô$\frac{1}{AM}$+$\frac{1}{BN}$=$\frac{5}{3}$£¬ÇÒAM¡¢BNÖ®¼äµÄ¾àÀëΪ5£¬Ôòk-b=3£®

·ÖÎö £¨1£©ÓÉ$\left\{\begin{array}{l}{y=kx}\\{y=\frac{k}{x}}\end{array}\right.$½âµÃ£º$\left\{\begin{array}{l}{x=1}\\{y=k}\end{array}\right.$ºÍ$\left\{\begin{array}{l}{x=-1}\\{y=-k}\end{array}\right.$£¬¼´¿ÉµÃ³ö´ð°¸£»
£¨2£©°ÑÈôA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©´úÈëy=mx+nµÃ³öy1+y2=m£¨x1+x2£©+2n£¬ÓÉ$\left\{\begin{array}{l}{y=mx+n}\\{y=\frac{k}{x}}\end{array}\right.$µÃ³ömx2+nx-k=0£¬ÓɸùÓëϵÊý¹ØÏµµÃ³öx1+x2=-$\frac{n}{m}$£¬µÃ³öy1+y2=n¼´¿É£»
£¨3£©ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÔòM£¨x3£¬y1£©¡¢N£¨x4£¬y2£©£¬ÓÉ·´±ÈÀýº¯ÊýµÃ³öx1y1=x2y2=k£¬x3y1=x4y2=b£¬ÓÉ×ø±êÓëͼÐÎÐÔÖʵóöAM=x3-x1=$\frac{b}{{y}_{1}}$-$\frac{k}{{y}_{1}}$=$\frac{b-k}{{y}_{1}}$£¬bn=x2-x4=$\frac{k}{{y}_{2}}$-$\frac{b}{{y}_{2}}$=$\frac{k-b}{{y}_{2}}$£¬y2-y1=5£¬ÔÙ½áºÏÒÑÖªÌõ¼þ£¬¼´¿ÉµÃ³ö´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉ$\left\{\begin{array}{l}{y=kx}\\{y=\frac{k}{x}}\end{array}\right.$½âµÃ£º$\left\{\begin{array}{l}{x=1}\\{y=k}\end{array}\right.$ºÍ$\left\{\begin{array}{l}{x=-1}\\{y=-k}\end{array}\right.$£¬
¡àA£¨1£®k£©£¬B£¨-1£¬-k£©£»
£¨2£©y1+y2=n£»ÀíÓÉÈçÏ£º
°ÑÈôA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©´úÈëy=mx+nÖУ¬
Ôòy1=mx1+n£¬y2=mx2+n£¬
¡ày1+y2=m£¨x1+x2£©+2n£¬
ÓÉ$\left\{\begin{array}{l}{y=mx+n}\\{y=\frac{k}{x}}\end{array}\right.$µÃ£ºmx+n=$\frac{k}{x}$£¬
¡àmx2+nx-k=0£¬
¡ßÖ±Ïßy=mx+nÓë·´±ÈÀýº¯Êýy=$\frac{k}{x}$½»ÓÚA¡¢BÁ½µã£¬
¡àx1+x2=-$\frac{n}{m}$£¬
¡ày1+y2=m•£¨-$\frac{n}{m}$£©+2n=-n+2n=n£»
£¨3£©ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬
¡ßAM¡ÎMN¡ÎxÖᣮ¡àM£¨x3£¬y1£©¡¢N£¨x4£¬y2£©£¬
¡àx1y1=x2y2=k£¬x3y1=x4y2=b£¬AM=x3-x1=$\frac{b}{{y}_{1}}$-$\frac{k}{{y}_{1}}$=$\frac{b-k}{{y}_{1}}$£¬bn=x2-x4=$\frac{k}{{y}_{2}}$-$\frac{b}{{y}_{2}}$=$\frac{k-b}{{y}_{2}}$£¬y2-y1=5£¬
¡ß$\frac{1}{AM}$+$\frac{1}{BN}$=$\frac{5}{3}$£¬
¡à$\frac{{y}_{1}}{b-k}$+$\frac{{y}_{2}}{k-b}$=$\frac{5}{3}$£¬
¡à$\frac{{y}_{2}-{y}_{1}}{k-b}$=$\frac{5}{3}$£¬
¡à$\frac{5}{k-b}$=$\frac{5}{3}$£¬
¡àk-b=3£»
¹Ê´ð°¸Îª£º3£®

µãÆÀ ±¾ÌâÊÇ·´±ÈÀýº¯Êý×ÛºÏÌâÄ¿£¬¿¼²éÁË·´±ÈÀýº¯ÊýµÄÓ¦Óá¢×ø±êÓëͼÐÎÐÔÖÊ¡¢·½³Ì×éµÄ½â·¨¡¢¸ùÓëϵÊý¹ØÏµµÈ֪ʶ£»±¾Ìâ×ÛºÏÐÔÇ¿£¬ÓÐÒ»¶¨ÄѶȣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø