ÌâÄ¿ÄÚÈÝ
18£®Èçͼ£¬Ö±Ïßy=kx+k½»xÖᣬyÖá·Ö±ðÓÚA£¬C£¬Ö±ÏßBC¹ýµãC½»xÖáÓÚB£¬OC=3OA£¬¡ÏCBA=45¡ã£®£¨1£©ÇóÖ±ÏßBCµÄ½âÎöʽ£»
£¨2£©¶¯µãP´ÓA³ö·¢ÑØÉäÏßABÔÈËÙÔ˶¯£¬ËÙ¶ÈΪ2¸öµ¥Î»/Ã룬Á¬½ÓCP£¬Éè¡÷PBCµÄÃæ»ýΪS£¬µãPµÄÔ˶¯Ê±¼äΪtÃ룬ÇóSÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬Ö±½Óд³ötµÄȡֵ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µ±µãPÔÚABµÄÑÓ³¤ÏßÉÏÔ˶¯Ê±£¬¹ýµãO×÷OD¡ÍPCÓÚD£¬½»BCÓÚµãE£¬Á¬½ÓAE£¬µ±¡ÏEAB=¡ÏCPAʱ£¬ÔÚ×ø±êÖáÉÏÓеãK£¬ÇÒKC=KP£¬ÇóµãKµÄ×ø±ê£®
·ÖÎö £¨1£©Áîy=0£¬¼´¿ÉÇóµÃAµÄ×ø±ê£¬¸ù¾ÝOC=3OA¼´¿ÉÇóµÃCµÄ×ø±ê£¬ÔÙ¸ù¾Ý¡ÏCBA=45¡ã£¬¼´¡÷BOCµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÔòBµÄ×ø±ê¼´¿ÉÇóµÃ£¬È»ºóÀûÓôý¶¨ÏµÊý·¨ÇóµÃBCµÄ½âÎöʽ£»
£¨2£©·Ö³ÉPÔÚABºÍÔÚABµÄÑÓ³¤ÏßÉÏÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬ÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½¼´¿ÉÇó½â£»
£¨3£©ÉèPµÄ×ø±êÊÇ£¨2t-1£¬0£©£¬ÀûÓôý¶¨ÏµÊý·¨ÇóµÄPCµÄ½âÎöʽ£¬O×÷OD¡ÍPCÓÚD£¬Á¬½ÓAD£¬µ±¡ÏDAB=¡ÏCPA£¬ÔòDµÄºá×ø±êÓëABµÄÖеãµÄºá×ø±êÏàµÈ£¬ÇÒDµ½ABµÄ¾àÀëµÈÓÚ$\frac{1}{2}$AB£¬ÔòDµÄ×ø±ê¼´¿ÉÀûÓÃt±íʾ³öÀ´£¬È»ºó´úÈëPCµÄ½âÎöʽÇóµÃtµÄÖµ£¬¼´¿ÉµÃµ½PµÄ×ø±ê£¬½ø¶øÇó½â£®
½â´ð ½â£º£¨1£©ÔÚy=kx+kÖУ¬Áîy=0£¬Ôòx=-1£¬¼´AµÄ×ø±êÊÇ£¨-1£¬0£©£®
¡ßOC=3OA£¬
¡àOC=3£¬¼´CµÄ×ø±êÊÇ£¨0£¬3£©£®
¡ß¡ÏCBA=45¡ã£¬
¡à¡ÏOCB=¡ÏCBA=45¡ã£¬
¡àOB=OC=3£¬ÔòBµÄ×ø±êÊÇ£¨3£¬0£©£®
ÉèBCµÄ½âÎöʽÊÇy=kx+b£¬Ôò$\left\{\begin{array}{l}{3k+b=0}\\{b=3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-1}\\{b=3}\end{array}\right.$£¬
ÔòBCµÄ½âÎöʽÊÇy=-x+3£»
£¨2£©µ±0£¼t¡Ü2ʱ£¬PÔÚÏß¶ÎABÉÏ£¬ÔòBP=4-2t£¬
ÔòS=$\frac{1}{2}$£¨4-2t£©¡Á3=-3t+6£»
µ±t£¾2ʱ£¬OP=2t-4£¬ÔòS=$\frac{1}{2}$¡Á3£¨2t-4£©£¬¼´S=3t-6£»
£¨3£©×÷DF¡ÍABÓÚµãF£®
¡ßPµÄ×ø±êÊÇ£¨2t-1£¬0£©£¬AµÄ×ø±êÊÇ£¨-1£¬0£©£®
¡àDµÄºá×ø±êÊÇ$\frac{2t-1-1}{2}$=t-1£®![]()
¡ßAD¡ÍCP£¬¡ÏDAB=¡ÏCPA£¬ÔòAD=DP£¬
¡à¡÷ADBÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
ÓÖ¡ßDF¡ÍABÓÚµãF£¬
¡àDF=$\frac{1}{2}$AP=t£¬¼´DµÄ×ø±êÊÇ£¨t-1£¬t£©£¬
ÉèPCµÄ½âÎöʽÊÇy=mx+n£¬Ôò$\left\{\begin{array}{l}{n=3}\\{£¨2t-1£©m+n=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{m=\frac{3}{1-2t}}\\{n=3}\end{array}\right.$£¬
ÔòPCµÄ½âÎöʽÊÇy=$\frac{3}{1-2t}$x+3£¬
°ÑDµÄ×ø±êÊÇ£¨t-1£¬t£©£¬´úÈë½âÎöʽµÃ£¬$\frac{3}{1-2t}$•£¨t-1£©=t£¬
½âµÃ£ºt=2»ò0£¨ÉáÈ¥£©£®
ÔòPµÄ×ø±êÊÇ£¨3£¬0£©£®
ÔòPCµÄ½âÎöʽÊÇy=-x+3£®
ÔòBÓëPÖØºÏ£¬¡ßOC=OB£¬KC=KP£¬
¡àKÓëOÖØºÏ£¬¼´KµÄ×ø±êÊÇ£¨0£¬0£©£®
µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬ÒÔ¼°µÈÑüÖ±½ÇÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓòÎÊý½â¾öÎÊÌ⣬ÕýÈ·ÇóµÃDµÄ×ø±êÊDZ¾ÌâµÄÍ»ÆÆµã£®
| A£® | 3 | B£® | 4 | C£® | 2$\sqrt{2}$ | D£® | 2 |
£¨1£©ºþÃæÕ¼µØÃæ»ý×î´ó£¬Â·ÃæÕ¼µØÃæ»ý×îС£®
£¨2£©É½ÇðÕ¼¹«Ô°µÄ22%£®
£¨3£©¼ÙÉ蹫԰ռµØ1200¹«Ç꣬ÇëÌîдÏÂ±í£®
| Õ¼µØÀàÐÍ | ºþÃæ | ɽÇð | Â·Ãæ | ÆäËü |
| Õ¼µØÃæ»ý£¨¹«Ç꣩ | 498 | 264 | 102 | 336 |
| A£® | AB¡ÎCD£¬AD¡ÎBC | B£® | AB=AD£¬CB=CD | C£® | AB=CD£¬AC=BD | D£® | ¡ÏA=¡ÏB£¬¡ÏC=¡ÏD |