题目内容

4.如图,∠ABC=∠ADC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2.请说明∠A=∠C的理由.
解:因为BE、DF分别平分∠ABC、∠ADC(已知),
所以∠1=$\frac{1}{2}$∠ABC,∠3=$\frac{1}{2}$∠ADC(角平分线定义)
因为∠ABC=∠ADC(已知).
所以$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠ADC(等式的性质)
(请完成以下说理过程)

分析 根据角平分线定义得出∠1=$\frac{1}{2}$∠ABC,∠3=$\frac{1}{2}$∠ADC,求出∠1=∠3,求出∠2=∠3,根据平行线的判定得出AB∥CD,根据平行线的性质得出∠A+∠ADC=180°,∠C+∠ABC=180°,即可得出答案.

解答 解:∵BE、DF分别平分∠ABC、∠ADC(已知)
∴∠1=$\frac{1}{2}$∠ABC,∠3=$\frac{1}{2}$∠ADC (角平分线定义),
∵∠ABC=∠ADC(已知),
∴$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠ADC(等式的性质),
∴∠1=∠3 (等量代换),
∵∠1=∠2(已知),
∴∠2=∠3(等量代换),
∴AB∥CD(内错角相等,两直线平行),
∴∠A+∠ADC=180°,∠C+∠ABC=180°(两直线平行,同旁内角互补),
∴∠A=∠C(等角的补角相等),
故答案为:$\frac{1}{2}$∠ADC,角平分线定义,等式的性质.

点评 本题考查了平行线的性质和判定,角平分线定义等知识点,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网