题目内容

20.计算:$\frac{\sqrt{3}-1}{\sqrt{6}+\sqrt{2}-2-\sqrt{3}}$.

分析 先把原式变形为$\frac{\sqrt{3}-1}{\sqrt{3}(\sqrt{2}-1)-\sqrt{2}(\sqrt{2}-1)}$=$\frac{\sqrt{3}-1}{(\sqrt{3}-\sqrt{2})(\sqrt{2}-1)}$,再分母有理化即可求解.

解答 解:$\frac{\sqrt{3}-1}{\sqrt{6}+\sqrt{2}-2-\sqrt{3}}$
=$\frac{\sqrt{3}-1}{\sqrt{3}(\sqrt{2}-1)-\sqrt{2}(\sqrt{2}-1)}$
=$\frac{\sqrt{3}-1}{(\sqrt{3}-\sqrt{2})(\sqrt{2}-1)}$
=($\sqrt{3}$-1)($\sqrt{3}$+$\sqrt{2}$)($\sqrt{2}$+1)
=$\sqrt{3}$+2$\sqrt{2}$+1

点评 本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网