题目内容

6.如图,在等腰梯形ABCD中,AB∥CD,AB=6,CD=14,∠AEC=90°,CE=CB,则AE2=84.

分析 如图,连接AC,过点A作AF⊥CD于点F,过点B作BG⊥CD于点G,构建直角△AFC和直角△BGC,结合勾股定理求得AE2的值.

解答 解:如图,连接AC,过点A作AF⊥CD于点F,过点B作BG⊥CD于点G,则AF=BG,AB=FG=6,DF=CG=4.
在直角△AFC中,AC2=AF2+FC2=AF2+102=AF2+100,
在直角△BGC中,BC2=BG2+GC2=AF2+42=AF2+16,
又∵CE=CB,∠AEC=90°,
∴AE2=AC2-EC2=AF2+100-(AF2+16)=84,即AE2=84.
故答案是:84.

点评 本题考查了等腰梯形的性质,勾股定理的应用.解题的关键是作出辅助线,构建直角三角形,利用勾股定理来求AE2的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网