题目内容
6.(1)求证:四边形AFHG为正方形;
(2)若BD=6,CD=4,求AB的长.
分析 (1)由折叠的性质可得到的条件是:①AG=AD=AF,②∠GAF=∠GAD+∠DAF=2∠BAC=90°,且∠G=∠F=90°;由②可判定四边形AGHF是矩形,由AG=AF可证得四边形AGHF是正方形;
(2)设AD=x,由折叠的性质可得:AD=AF=x(即正方形的边长为x),BG=BD=6,CF=CD=4;进而可用x表示出BH、HC的长,即可在Rt△BHC中,由勾股定理求得AD的长,进而可求出AB的长.
解答 证明:(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°;
由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°,
∠BAG=∠BAD,∠CAF=∠CAD,
∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;
∴∠GAF=∠BAG+∠CAF+∠BAC=90°;
∴四边形AFHG是正方形,![]()
解:(2)∵四边形AFHG是正方形,
∴∠BHC=90°,
又GH=HF=AD,GB=BD=6,CF=CD=4;
设AD的长为x,则BH=GH-GB=x-6,CH=HF-CF=x-4.
在Rt△BCH中,BH2+CH2=BC2,
∴(x-6)2+(x-4)2=102,
解得x1=12,x2=-2(不合题意,舍去),
∴AD=12,
∴AB=$\sqrt{A{D}^{2}+B{D}^{2}}$=$\sqrt{144+36}$=6$\sqrt{5}$.
点评 此题主要考查了垂径定理、勾股定理、正方形的判定和性质以及图形的翻折变换等知识,能够根据折叠的性质得到与所求相关的相等角和相等边是解答此题的关键.
练习册系列答案
相关题目
15.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )
| A. | 562.5元 | B. | 875元 | C. | 550元 | D. | 750元 |