题目内容

6.如图,在△ABC中,∠ACB=90°,AC=BC=4,D为BC的中点,DE⊥AB,垂足为E.过点B作BF∥AC交DE的延长线于点F,连接CF,AF.现有如下结论:
①AD平分∠CAB;②BF=2;③AD⊥CF;④AF=2$\sqrt{5}$;⑤∠CAF=∠CFB.
其中正确的结论有(  )
A.5个B.4个C.3个D.2个

分析 ①错误.由CD=DB,推出AD是△ACB的中线,如果是角平分线,则AC=BC,显然与已知矛盾,故错误.
②正确.易证△DBF是等腰直角三角形,故BF=BD=2.
③正确.由△ACD≌△CBF,推出∠CAD=∠BCF,由∠BCF+∠ACF=90°,推出∠CAD+∠ACF=90°,即AD⊥CF.
④正确.在Rt△ACD中,AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,易证AF=AD=2$\sqrt{5}$.
⑤正确.于△ACD≌△CBF,推出AD=CF=AF,推出∠CAF=∠FCA,于AC∥BF,即可推出∠CFB=∠FCA=∠CAF.

解答 解:①错误.∵CD=DB,
∴AD是△ACB的中线,如果是角平分线,则AC=BC,显然与已知矛盾,故错误.
②正确.易证△DBF是等腰直角三角形,故BF=BD=2.
③正确.∵AC=BC,∠ACD=∠CBF,CD=BF,
∴△ACD≌△CBF,
∴∠CAD=∠BCF,
∵∠BCF+∠ACF=90°,
∴∠CAD+∠ACF=90°,
∴AD⊥CF.
④正确.在Rt△ACD中,AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,易证AF=AD=2$\sqrt{5}$.
⑤正确.∵△ACD≌△CBF,
∴AD=CF=AF,
∴∠CAF=∠FCA,
∵AC∥BF,
∴∠CFB=∠FCA=∠CAF.
故选B.

点评 本题考查全等三角形的判定和性质、平行线的性质、等腰直角三角形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网