题目内容
6.①AD平分∠CAB;②BF=2;③AD⊥CF;④AF=2$\sqrt{5}$;⑤∠CAF=∠CFB.
其中正确的结论有( )
| A. | 5个 | B. | 4个 | C. | 3个 | D. | 2个 |
分析 ①错误.由CD=DB,推出AD是△ACB的中线,如果是角平分线,则AC=BC,显然与已知矛盾,故错误.
②正确.易证△DBF是等腰直角三角形,故BF=BD=2.
③正确.由△ACD≌△CBF,推出∠CAD=∠BCF,由∠BCF+∠ACF=90°,推出∠CAD+∠ACF=90°,即AD⊥CF.
④正确.在Rt△ACD中,AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,易证AF=AD=2$\sqrt{5}$.
⑤正确.于△ACD≌△CBF,推出AD=CF=AF,推出∠CAF=∠FCA,于AC∥BF,即可推出∠CFB=∠FCA=∠CAF.
解答 解:①错误.∵CD=DB,
∴AD是△ACB的中线,如果是角平分线,则AC=BC,显然与已知矛盾,故错误.
②正确.易证△DBF是等腰直角三角形,故BF=BD=2.![]()
③正确.∵AC=BC,∠ACD=∠CBF,CD=BF,
∴△ACD≌△CBF,
∴∠CAD=∠BCF,
∵∠BCF+∠ACF=90°,
∴∠CAD+∠ACF=90°,
∴AD⊥CF.
④正确.在Rt△ACD中,AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,易证AF=AD=2$\sqrt{5}$.
⑤正确.∵△ACD≌△CBF,
∴AD=CF=AF,
∴∠CAF=∠FCA,
∵AC∥BF,
∴∠CFB=∠FCA=∠CAF.
故选B.
点评 本题考查全等三角形的判定和性质、平行线的性质、等腰直角三角形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
练习册系列答案
相关题目
16.若直角三角形的两条直角边长分别是6和8,则它的外接圆半径为( )
| A. | $\sqrt{7}$ | B. | 4 | C. | 5 | D. | 10 |
17.
如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
| A. | BD=CD | B. | AB=AC | C. | ∠B=∠C | D. | ∠BDA=∠CDA |
14.若单项式x2ym-n与单项式-$\frac{1}{2}{x^{2m+n}}{y^3}$是同类项,那么这两个多项式的和是( )
| A. | $\frac{1}{2}{x^4}{y^6}$ | B. | $\frac{1}{2}{x^2}{y^3}$ | C. | $\frac{3}{2}{x^2}{y^3}$ | D. | $-\frac{1}{2}{x^2}{y^3}$ |
1.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字2,3,4,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,实验数据如下表:
解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为6”的频率将稳定在它的概率附近,估计出现“和为6”的概率是0.33.
(2)当x=5时,请用列表法或树状图法计算“和为6”的概率
(3)判断x=5是否符合(1)的结论,若符合,请说明理由,若不符合,请你写出一个符合(1)的x的值.
| 摸球总次数 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
| “和为6”出现的频数 | 10 | 13 | 24 | 30 | 37 | 58 | 82 | 110 | 150 |
| “和为6”出现的频数 | 0.50 | 0.43 | 0.40 | 0.33 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
(1)如果实验继续进行下去,根据上表数据,出现“和为6”的频率将稳定在它的概率附近,估计出现“和为6”的概率是0.33.
(2)当x=5时,请用列表法或树状图法计算“和为6”的概率
(3)判断x=5是否符合(1)的结论,若符合,请说明理由,若不符合,请你写出一个符合(1)的x的值.
18.阿里巴巴数据显示,2016年天猫商城“双11”全球狂欢交易额超1207亿元,数据1207亿元用科学记数法表示为( )
| A. | 120.7×109 | B. | 12.07×1010 | C. | 1.207×1011 | D. | 0.1207×1012 |