题目内容
如图,在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F.求证:EF⊥AP.
考点:正方形的性质
专题:证明题
分析:延长FP交AB交于G,延长AP交EF于点H,易证△PAG≌△EFP,可求得∠FPH+∠PFH=90°,可证得结论..
解答:
证明:如图,延长FP交AB于点G,延长AP交EF于点H,
∵四边形ABCD为正方形,
∴∠C=∠ABC=90°,
又∵PE⊥BC,PF⊥CD,
∴四边形PECF为矩形,
同理四边形BCFG也为矩形,
∴PE=FC=GB,
又∵BD平分∠ABC,
∴∠GBD=45°,
∴PG=BG=PE,
又∵AB=BC=CD,
∴AG=EC=PF,
在△PAG和△EFP中,
,
∴△PAG≌△EFP(SAS),
∴∠APG=∠FEP=∠FPH,
∵∠FEP+∠PFH=90°,
∴∠FPH+∠PFH=90°,
∴AP⊥EF.
∵四边形ABCD为正方形,
∴∠C=∠ABC=90°,
又∵PE⊥BC,PF⊥CD,
∴四边形PECF为矩形,
同理四边形BCFG也为矩形,
∴PE=FC=GB,
又∵BD平分∠ABC,
∴∠GBD=45°,
∴PG=BG=PE,
又∵AB=BC=CD,
∴AG=EC=PF,
在△PAG和△EFP中,
|
∴△PAG≌△EFP(SAS),
∴∠APG=∠FEP=∠FPH,
∵∠FEP+∠PFH=90°,
∴∠FPH+∠PFH=90°,
∴AP⊥EF.
点评:本题主要考查正方形的性质及全等三角形的判定和性质,构造三角形全等找到角之间的关系是解题的关键.
练习册系列答案
相关题目