题目内容

20.如图,$\widehat{AB}$是半圆,连接AB,点O为AB的中点,点C、D在$\widehat{AB}$上,连接AD、CO、BC、BD、OD.若∠COD=62°,且AD∥OC,则∠ABD的大小是(  )
A.26°B.28°C.30°D.32°

分析 由圆周角定理求出∠ADB=90°,由平行线的性质得出∠A=∠COD=62°,再由直角三角形的性质即可得出结果.

解答 解:∵AB是半圆的直径,
∴∠ADB=90°,
∵AD∥OC,
∴∠A=∠COD=62°,
∴∠ABD=90°-∠A=28°;
故选:B.

点评 本题考查了圆周角定理、平行线的性质、直角三角形的性质;熟练掌握圆周角定理,由平行线的性质得出∠A的度数是解决问题的突破口.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网