题目内容

2.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论①abc<0;②b2-4ac>0;③ac-b+1=0;④OA•OB=$\frac{c}{a}$.
其中正确结论的个数是(  )
A.1B.2C.3D.4

分析 利用抛物线开口方向得到a<0,利用抛物线的对称轴位置得到b>0,利用抛物线与y轴的交点位置得到c>0,则可对①进行判断;利用抛物线与x轴有2个交点可对②进行判断;把A点坐标代入解析式可对③进行判断;设A、B两点的横坐标为x1、x2,则OA=-x1,OB=x2,利用根与系数的关系可对④进行判断.

解答 解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴在y轴的右侧,
∴b>0,
∵抛物线与y轴的交点在x轴下方,
∴c>0,
∴abc<0,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,所以②正确;
∵OA=OC,C(0,c),
∴A(-c,0),
∴ac2-bc+c=0,
∴ac-b+1=0,所以③正确;
设A、B两点的横坐标为x1、x2,则OA=-x1,OB=x2
∵x1•x2=$\frac{c}{a}$,
∴OA•OB=-$\frac{c}{a}$,所以④错误.
故选C.

点评 本题考查了 抛物线与x轴的交点:二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系,△=b2-4ac决定抛物线与x轴的交点个数,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了二次函数图象与系数的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网