题目内容

18.先化简,再求值:$\frac{x-2}{{x}^{2}-1}$÷(x-1-$\frac{2x-1}{x+1}$),其中x是方程x2+x-6=0的根.

分析 先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.

解答 解:原式=$\frac{x-2}{(x+1)(x-1)}$÷$\frac{(x+1)(x-1)-2x+1}{x+1}$
=$\frac{x-2}{(x+1)(x-1)}$•$\frac{x+1}{x(x-2)}$
=$\frac{1}{x(x-1)}$,
由x2+x-6=0,得x=-3或x=2(原分式无意义,舍去),
则当x=-3时,原式=$\frac{1}{12}$.

点评 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网