题目内容

7.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为$\frac{12\sqrt{5}}{5}$.

分析 由题意得:DF=DB,得到点F在以D为圆心,BD为半径的圆上,作⊙D; 连接AD交⊙D于点F,此时AF值最小,由点D是边BC的中点,得到CD=BD=3;而AC=4,由勾股定理得到AD=5,求得线段AF长的最小值是2,连接BF,过F作FH⊥BC于H,根据相似三角形的性质即可得到结论.

解答 解:由题意得:DF=DB,
∴点F在以D为圆心,BD为半径的圆上,作⊙D; 连接AD交⊙D于点F,此时AF值最小,
∵点D是边BC的中点,
∴CD=BD=3;而AC=4,
由勾股定理得:AD2=AC2+CD2
∴AD=5,而FD=3,
∴FA=5-3=2,
即线段AF长的最小值是2,
连接BF,过F作FH⊥BC于H,
∵∠ACB=90°,
∴FH∥AC,
∴△DFH∽△ADC,
∴$\frac{DF}{AD}=\frac{DH}{CD}=\frac{HF}{AC}$,
∴HF=$\frac{12}{5}$,DH=$\frac{9}{5}$,
∴BH=$\frac{24}{5}$,
∴BF=$\sqrt{B{H}^{2}+H{F}^{2}}$=$\frac{12\sqrt{5}}{5}$,
故答案为:$\frac{12\sqrt{5}}{5}$.

点评 该题主要考查了翻折变换的性质、勾股定理、最值问题等几何知识点及其应用问题;解题的关键是作辅助线,从整体上把握题意,准确找出图形中数量关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网