题目内容
7.解下列方程:(1)2x2+3x-1=0
(2)3(x-1)2=x(x-1)
分析 (1)利用公式法求出x的值即可;
(2)把方程左边化为两个因式积的形式,再求出x的值即可.
解答 解:(1)∵△=9+8=17,
∴x=$\frac{-3±\sqrt{17}}{4}$,
∴x1=$\frac{-3+\sqrt{17}}{4}$,x2=$\frac{-3-\sqrt{17}}{4}$;
(2)方程左边可化为3(x-1)2-x(x-1)=0,
因式分解得,(x-1)(2x-3)=0,
故x-1=0或2x-3=0,解得x1=1,x2=$\frac{3}{2}$.
点评 本题考查的是利用因式分解法解一元二次方程,因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
练习册系列答案
相关题目
15.目前节能灯在各城市已基本普及,今年某市面向县级及农村地区推广,为响应号召,朝阳灯饰商场用了4200元购进甲型和乙型两种节能灯.这两种型号节能灯的进价、售价如表:
特别说明:毛利润=售价-进价
(1)朝阳灯饰商场销售甲型节能灯一只毛利润是5元;
(2)朝阳灯饰商场购买甲,乙两种节能灯共100只,其中买了甲型节能灯多少只?
(3)现在朝阳灯饰商场购进甲型节能灯m只,销售完节能灯时所获的毛利润为y元.
①当y=1080时,求m的值;
②朝阳灯饰商场把购进的这两种型号节能灯全部销售完时,所获得的毛利润最多是1400元.(请直接写出答案)
| 进价(元/只) | 售价(元/只) | |
| 甲型 | 25 | 30 |
| 乙型 | 45 | 60 |
(1)朝阳灯饰商场销售甲型节能灯一只毛利润是5元;
(2)朝阳灯饰商场购买甲,乙两种节能灯共100只,其中买了甲型节能灯多少只?
(3)现在朝阳灯饰商场购进甲型节能灯m只,销售完节能灯时所获的毛利润为y元.
①当y=1080时,求m的值;
②朝阳灯饰商场把购进的这两种型号节能灯全部销售完时,所获得的毛利润最多是1400元.(请直接写出答案)
12.下列各式中的大小关系成立的是( )
| A. | $-0.3<-\frac{1}{3}$ | B. | $-\frac{6}{5}>-\frac{7}{6}$ | C. | (-2)3>(-2)2 | D. | $-\frac{9}{10}>-\frac{10}{9}$ |