题目内容

14.如图,⊙A经过点E、B、C、O,且C(0,8),E(-6,0),O(0,0),则cos∠OBC的值为(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{3}{16}$

分析 连接EC,由∠COE=90°,根据圆周角定理可得:EC是⊙A的直径,由C(0,8),E(-6,0),O(0,0),可得OC=8,OE=6,根据勾股定理可求EC=10,然后由圆周角定理可得∠OBC=∠OEC,然后求出cos∠OEC的值,即可得cos∠OBC的值.

解答 解:连接EC,∵∠COE=90°,
∴EC是⊙A的直径,
∵C(0,8),E(-6,0),O(0,0),
∴OC=8,OE=6,
由勾股定理得:EC=10,
∵∠OBC=∠OEC,
∴cos∠OBC=cos∠OEC=$\frac{OE}{EC}$=$\frac{6}{10}=\frac{3}{5}$.
故选A.

点评 此题考查了圆周角定理,勾股定理,坐标与图形性质,以及锐角三角函数定义,熟练掌握定理是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网