题目内容
已知关于x的一元二次方程x2+bx+c=0,从-1,2,3三个数中任取一个数,作为方程中b的值,再从剩下的两个数中任取一个数作为方程中c的值,能使该一元二次方程有实数根的概率是 .
考点:列表法与树状图法,根的判别式
专题:计算题
分析:先利用树状图展示所有6种等可能的结果数,再根据判别式的意义得到当b=2,c=-1;b=3,c=-1;b=3,c=2时,该一元二次方程有实数根,然后根据概率公式计算.
解答:解:画树状图为:
,
共有6种等可能的结果数,
因为b2-4c≥0,
所以能使该一元二次方程有实数根占3种,
b=2,c=-1;
b=3,c=-1;
b=3,c=2,
所以能使该一元二次方程有实数根的概率=
=
.
故答案为:
.
共有6种等可能的结果数,
因为b2-4c≥0,
所以能使该一元二次方程有实数根占3种,
b=2,c=-1;
b=3,c=-1;
b=3,c=2,
所以能使该一元二次方程有实数根的概率=
| 3 |
| 6 |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了根的判别式.
练习册系列答案
相关题目
若x+y=5,xy=3,则x2+y2=( )
| A、16 | B、17 | C、18 | D、19 |