题目内容
15.如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如:3=22-12,3就是一个智慧树,在正整数中,从1开始,第2017个智慧数是2692.分析 如果一个数是智慧数,就能表示为两个正整数的平方差,设这两个数分别m、n,设m>n,即智慧数=m2-n2=(m+n)(m-n),因为m,n是正整数,因而m+n和m-n就是两个自然数.要判断一个数是否是智慧数,可以把这个数分解因数,分解成两个整数的积,看这两个数能否写成两个正整数的和与差.
解答 解:1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1)2-k2(k=1,2,…).所以大于1的奇正整数都是“智慧数”.
对于被4整除的偶数4k,有4k=(k+1)2-(k-1)2(k=2,3,…).
即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.
对于被4除余2的数4k+2(k=0,1,2,3,…),设4k+2=x2-y2=(x+y)(x-y),其中x,y为正整数,
当x,y奇偶性相同时,(x+y)(x-y)被4整除,而4k+2不被4整除;
当x,y奇偶性相异时,(x+y)(x-y)为奇数,而4k+2为偶数,总得矛盾.
所以不存在自然数x,y使得x2-y2=4k+2.即形如4k+2的数均不为“智慧数”.
因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.
因为2017=(1+3×672),4×(672+1)=2692,所以2692是第2017个“智慧数”,
故答案为:2692.
点评 本题主要考查了平方差公式,有一定的难度,主要是对题中新定义的理解与把握.
练习册系列答案
相关题目
5.有理数a 的绝对值与它的相反数相等,那么a 是( )
| A. | 正数 | B. | 负数 | C. | 非负数 | D. | 非正数 |