ÌâÄ¿ÄÚÈÝ
19£®£¨2£©½â²»µÈʽ×飬²¢°ÑËüµÄ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£®
$\left\{\begin{array}{l}{5x-1£¼3£¨x+1£©}\\{\frac{2x-1}{3}-\frac{5x+1}{2}¡Ü1}\end{array}\right.$
£¨3£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{{x}^{2}-1}{x+2}$¡Â£¨1-$\frac{1}{x+2}$£©£¬ÆäÖÐxµÄÖµÂú×㣺x2=4£®
·ÖÎö £¨1£©·Ö±ð¸ù¾Ý¸ºÕûÊýÖ¸ÊýÃݵļÆËã·¨Ôò¡¢ÊýµÄ¿ª·½·¨Ôò¼°ÌØÊâ½ÇµÄÈý½Çº¯ÊýÖµ¼ÆËã³ö¸÷Êý£¬ÔÙ¸ù¾ÝʵÊý»ìºÏÔËËãµÄ·¨Ôò½øÐмÆËã¼´¿É£»
£¨2£©·Ö±ðÇó³ö¸÷²»µÈʽµÄ½â¼¯£¬ÔÙÇó³öÆä¹«¹²½â¼¯£¬²¢ÔÚÊýÖáÉϱíʾ³öÀ´¼´¿É£»
£¨3£©Ïȸù¾Ý·Öʽ»ìºÏÔËËãµÄ·¨Ôò°ÑÔʽ½øÐл¯¼ò£¬ÔÙÇó³öxµÄÖµ´úÈë½øÐмÆËã¼´¿É£®
½â´ð ½â£º£¨1£©Ôʽ=4+3-$\sqrt{3}$-3+$\sqrt{3}$
=4£»
£¨2£©$\left\{\begin{array}{l}5x-1£¼3£¨x+1£©¢Ù\\ \frac{2x-1}{3}-\frac{5x+1}{2}¡Ü1¢Ú\end{array}\right.$£¬Óɢٵã¬x£¼2£¬Óɢڵã¬x¡Ý-1£¬
¹Ê²»µÈʽ×éµÄ½â¼¯Îª£º-1¡Üx£¼2£®
ÔÚÊýÖáÉϱíʾΪ£º
£»
£¨3£©Ôʽ=$\frac{{x}^{2}-1}{x+2}$¡Â$\frac{x+1}{x+2}$
=$\frac{£¨x+1£©£¨x-1£©}{x+2}$•$\frac{x+2}{x+1}$
=x-1£¬
ÓÉx2=4µÃ£¬x=¡À2£¬
¡ßx+2¡Ù0£¬
¡àx¡Ù-2£¬
¡àµ±x=2ʱ£¬Ôʽ=1£®
µãÆÀ ±¾Ì⿼²éµÄÊÇ·ÖʽµÄ»¯¼òÇóÖµ£¬ÊìÖª·Öʽ»ìºÏÔËËãµÄ·¨ÔòÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®ÒªÊ¹·Öʽ$\frac{x+2}{x-1}$ÓÐÒâÒ壬ÔòxµÄȡֵӦÂú×㣨¡¡¡¡£©
| A£® | x¡Ù-2 | B£® | x¡Ù1 | C£® | x=-2 | D£® | x=1 |
7£®ÏÂÁÐÔËË㣺£¨1£©2x3-x2=x£»£¨2£©x3•£¨x5£©2=x13£»£¨3£©£¨-x£©6¡Â£¨-x£©3=x3£»£¨4£©£¨-2x3y£©2=4x6y2£¬ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | £¨1£©£¨2£© | B£® | £¨2£©£¨4£© | C£® | £¨2£©£¨3£© | D£® | £¨3£©£¨4£© |