题目内容
6.解方程组$\left\{\begin{array}{l}{x-2y-2=0①}\\{{x}^{2}+{y}^{2}-3y-4=0②}\end{array}\right.$.分析 将原来的方程组变形,然后根据解方程组的方法可以解答此方程组.
解答 解:$\left\{\begin{array}{l}{x-2y-2=0}&{①}\\{{x}^{2}+{y}^{2}-3y-4=0}&{②}\end{array}\right.$
则$\left\{\begin{array}{l}{x=2(y+1)}&{①}\\{{x}^{2}+(y-4)(y+1)=0}&{②}\end{array}\right.$
将①代入②,得
2(y+1)+(y-4)(y+1)=0,
∴(y+1)(y-2)=0,
解得,y=-1或y=2,
将y=-1代入①,得x=0,
将y=2代入①,得x=6,
∴原方程组的解是$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$或$\left\{\begin{array}{l}{x=6}\\{y=2}\end{array}\right.$.
点评 本题考查高次方程,解题的关键是明确解方程组的方法.
练习册系列答案
相关题目
3.下列的大小关系中,错误的是( )
| A. | 0>-2 | B. | 0.1>0 | C. | |-$\frac{8}{21}$|>-(-$\frac{3}{7}$) | D. | -$\frac{7}{25}$>-0.29 |