题目内容

如图,四边形ABCD是平行四边形,E,F为对角线AC上两点,连接ED,EB,FD,FB.给出以下结论:①BE∥DF;②BE=DF;③AE=CF.请你从中选取一个条件,使∠1=∠2成立,并给出证明.
考点:平行四边形的判定与性质,全等三角形的判定与性质
专题:证明题
分析:欲证明∠1=∠2,只需证得四边形EDFB是平行四边形或△ABF≌△CDE即可.
解答:解:方法一:
补充条件①BE∥DF.
证明:如图,∵BE∥DF,
∴∠BEC=∠DFA,
∴∠BEA=∠DFC,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF,
在△ABE与△CDF中,
∠BEA=∠DFC
AB=CD
∠BAE=∠DCF

∴△ABE≌△CDF(ASA),
∴BE=DF,
∴四边形BFDE是平行四边形,
∴ED∥BF,
∴∠1=∠2;

方法二:
补充条件③AE=CF.
证明:∵AE=CF,∴AF=CE.
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAF=∠DCE,
在△ABF与△CDE中,
AF=CE
∠BAF=∠DCE
AB=CD

∴△ABF≌△CDE(SAS),
∴∠1=∠2.
点评:本题考查了平行四边形的判定与性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网