题目内容

2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列五条结论:
①abc<0;②4ac-b2<0;③4a+c<2b;④3b+2c<0;⑤m(am+b)+b<a(m≠-1)
其中正确的结论是②④⑤(把所有正确的结论的序号都填写在横线上)

分析 根据抛物线开口方向、对称轴、与y轴交点可判断①;根据抛物线与x轴交点个数可判断②;根据x=0与x=-2关于对称轴x=-1对称,且x=0时y>0,可判断③;根据x=1时,y<0,且对称轴为x=-1可判断④;由抛物线在x=-1时有最大值,可判断⑤.

解答 解:①由抛物线图象得:开口向下,即a<0;c>0,-$\frac{b}{2a}$=-1<0,即b=2a<0,
∴abc>0,选项①错误;
②∵抛物线图象与x轴有两个交点,
∴△=b2-4ac>0,即4ac-b2<0,选项②正确;
③∵抛物线对称轴为x=-1,且x=0时,y>0,
∴当x=-2时,y=4a-2b+c>0,即4a+c>2b,选项③错误;
④∵抛物线对称轴x=-1,即-$\frac{b}{2a}$=-1,
∴a=$\frac{1}{2}b$,
由图象可知,当x=1时,y=a+b+c=$\frac{3b}{2}$+c<0,
故3b+2c<0,选项④正确;
⑤由图象可知,当x=-1时y取得最大值,
∵m≠-1,
∴am2+bm+c<a-b+c,即am2+bm+b<a,
∴m(am+b)+b<a,选项⑤正确;
故答案为:②④⑤.

点评 主要考查图象与二次函数系数之间的关系,掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网