题目内容

16.为迎接建国六十周年,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配成A、B两种园艺造型共50个,摆放在迎宾大道两侧.搭配每个造型所需花卉请况如下表所示:
造型
A9030
B40100
结合上述信息,解答下列问题:
(1)符合题意的搭配方案有哪几种?
(2)若搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1200元,试说明(1)中哪种方案成本最低,最低成本是多少?

分析 (1)设需要搭配x个A种造型,则需要搭配B种造型(50-x)个,根据“3600盆甲种花卉”“2900盆乙种花卉”列不等式求解,取整数值即可.
(2)总成本为:1000x+1200(50-x)=60000-2x.利用一次函数的性质进行解答即可.

解答 解:(1)设需要搭配x个A种造型,则需要搭配B种造型(50-x)个,
则有$\left\{\begin{array}{l}{90x+40(50-x)≤3600}\\{30x+100(50-x)≤2900}\end{array}\right.$,
解得30≤x≤32,
所以x=30或31或32.
第一方案:A种造型32个,B种造型18个;
第二种方案:A种造型31个,B种造型19个;
第三种方案:A种造型30个,B种造型20个.

(2)总成本为:1000x+1200(50-x)=60000-2x.
显然当x取最大值32时成本最低,为60000-2×32=53600
答:第一种方案成本最低,最低成本是53600.

点评 此题考查了一元一次不等式组的应用,也是一道实际问题,有一定的开放性,
(1)利用所用花卉数量不超过甲、乙两种花卉的最高数量列不等式组解答;
(2)为最优化问题,根据(1)的结果直接计算即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网