ÌâÄ¿ÄÚÈÝ
18£®£¨1£©Çóa¡¢bµÄÖµ£®
£¨2£©ÂäÔÚx=b´¦µÄµãÊÇ¡÷ABCµÄÄĸö¶¥µã£¿ËµÃ÷ÀíÓÉ£®
£¨3£©Ð¡¾ü²âµÃ¡÷MNDµÄ±ßMNÉϵĸßΪ$\frac{1}{2}$cm£¬½«¡÷MNDÒÔÿÃë3cmµÄËÙ¶ÈÑØ¸ßµÄ·½ÏòÏòÉÏÒÆ¶¯2Ã룬Õâʱ¡÷MNDɨ¹ýµÄÃæ»ýÊǶàÉÙ£¿
·ÖÎö £¨1£©ÀûÓ÷ǸºÊýµÄÐÔÖʼ´¿ÉÁз½³ÌÇóµÃaºÍbµÄÖµ£»
£¨2£©¸ù¾ÝaºÍbµÄÖµ£¬È·¶¨ABµÄ³¤£¬È»ºóÀûÓÃÐýתµÄÐÔÖÊÇó½â£»
£¨3£©¡÷MNDɨ¹ýµÄÃæ»ýÊÇ¡÷MNDµÄÃæ»ý¼ÓÉϳ¤ÊÇ3cmºÍ±ß³¤ÊÇMNµÄ¾ØÐεÄÃæ»ý£¬¾Ý´Ë¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒâµÃa-1=0ÇÒb-5=0£¬
½âµÃa=1£¬b=5£»
£¨2£©ÂäÔÚx=b´¦µÄµãÊÇ¡÷ABCµÄ¶¥µãÊÇB£»
£¨3£©¡÷MNDµÄÃæ»ýÊÇ$\frac{\sqrt{3}}{4}$£¬Ôò¡÷MNDɨ¹ýµÄÃæ»ýÊÇ1¡Á3+$\frac{\sqrt{3}}{4}$=$\frac{12+\sqrt{3}}{4}$£¨cm2£©£®
µãÆÀ ±¾Ì⿼²éÁ˷ǸºÊýµÄÐÔÖÊÒÔ¼°Í¼ÐεÄÐýת£¬ÕýÈ·Àí½â¡÷MNDɨ¹ýµÄͼÐÎÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿