题目内容

14.如图,抛物线y=$\frac{1}{2}$x2-$\frac{3}{2}$x-2与x轴交于A、B两点,点P(m,n)(n<0)为抛物线上一个动点,当∠APB为钝角时,则m的取值范围(  )
A.-1<m<0B.-1<m<0或3<m<4C.0<m<3或m>4D.m<-1或0<m<3

分析 根据解析式求得点A、B的坐标,以AB为直径作圆M,与y轴交于点P,因为AB为直径,所以当抛物线上的点P在⊙M的内部时,满足∠APB为钝角,进而得出m的取值范围.

解答 解:令y=0得:$\frac{1}{2}$x2-$\frac{3}{2}$x-2=0,
解得:x=-1或x=4,
则点A(-1,0)、B(4,0),
以AB为直径作圆M,与y轴交于点P.则抛物线在圆内的部分如图所示,能使∠APB为钝角,

∴M($\frac{3}{2}$,0),⊙M的半径=$\frac{5}{2}$.
在Rt△OMP中,∴OP=$\sqrt{P{M}^{2}-O{M}^{2}}$=2.
∴P(0,-2),
由抛物线的对称性可知,P′(3,-2),
∴当-1<m<0或3<m<4时,∠APB为钝角,
故选:B.

点评 本题考查了抛物线与x轴的交点与圆周角定理,注意数形结合利用圆周角定理得出P点坐标是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网