题目内容

10.若等腰三角形的一边长为6,另两边长分别是关于x的方程x2-(k+5)x+3k+6=0的两个根,则k的值是(  )
A.-1或4B.-1C.1或4D.4

分析 分类讨论:当6为等腰三角形的底边,则方程有等根,所以△=(k+5)2-4(3k+6)=0,解得k1=k2=1,于是根据根与系数的关系得两腰的和=k+5=6,不满足三角形三边的关系,故舍去;当6为等腰三角形的腰,则x=6为方程的解,把x=6代入方程可计算出k的值.

解答 解:①当6为等腰三角形的底边,根据题意得△=(k+5)2-4(3k+6)=0,解得k1=k2=1,
此时,两腰的和=k+5=6,不满足三角形三边的关系,所以k1=k2=1舍去;
②当6为等腰三角形的腰,则x=6为方程的解,把x=6代入方程得36-6(k+5)+3k+6=0,解得k=4;
故选:D.

点评 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-$\frac{b}{a}$,x1•x2=$\frac{c}{a}$.也考查了等腰三角形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网