ÌâÄ¿ÄÚÈÝ
4£®Èçͼ£¬ÔÚÖ±½ÇÈý½ÇÐÎABCÖУ¬¡ÏABC=90¡ã£¬AB=3£¬BC=4£®¶¯µãP´ÓµãA³ö·¢ÑØACÏòÖÕµãCÔ˶¯£¬Í¬Ê±¶¯µãQ´ÓµãB³ö·¢ÑØBAÏòµãAÔ˶¯£¬µ½´ïAµãºóÁ¢¿ÌÒÔÔÀ´µÄËÙ¶ÈÑØAB·µ»Ø£®µãP£¬QÔ˶¯ËٶȾùΪÿÃë1¸öµ¥Î»³¤¶È£¬µ±µãPµ½´ïCʱֹͣÔ˶¯£¬µãQҲͬʱֹͣ£®Á¬½ÓPQ£¬ÉèÔ˶¯Ê±¼äΪt£¨0£¼t¡Ü5£©Ã룮£¨1£©µ±µãQ´ÓBµãÏòAµãÔ˶¯Ê±£¨Î´µ½´ïµãA£©ÇóS¡÷APQÓëtµÄº¯Êý¹ØÏµÊ½£»Ð´³ötµÄȡֵ·¶Î§£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ËıßÐÎBQPCµÄÃæ»ýÄÜ·ñΪ¡÷ABCÃæ»ýµÄ$\frac{13}{15}$£¿ÈôÄÜ£¬Çó³öÏàÓ¦µÄtÖµ£»Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©°éËæµãP¡¢QµÄÔ˶¯£¬ÉèÏß¶ÎPQµÄ´¹Ö±Æ½·ÖÏßΪl£¬µ±l¾¹ýµãBʱ£¬ÇótµÄÖµ£®
·ÖÎö £¨1£©¹ýµãP×÷PH¡ÍABÓÚµãH£¬AP=t£¬AQ=3-t£¬Ö¤¡÷AHP¡×¡÷ABC£¬Çó³öPH=$\frac{4}{5}$£¬¸ù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½Çó³ö¼´¿É£»
£¨2£©ËıßÐÎBQPCµÄÃæ»ýÈôΪ¡÷ABCÃæ»ýµÄ$\frac{13}{15}$£¬ÄÇô¡÷APQµÄÃæ»ýΪ¡÷ABCÃæ»ýµÄ$\frac{2}{15}$£¬´úÈ루1£©Öеĺ¯Êý½âÎöʽ½øÐмÆËã¼´¿ÉµÃµ½´ð°¸£»
£¨3£©£¨i£©µ±µãQ´ÓBÏòAÔ˶¯Ê±l¾¹ýµãB£¬Çó³öCP=AP=$\frac{1}{2}$AC=2.5£¬¼´¿ÉÇó³öt£»
£¨¢¢£©µ±µãQ´ÓAÏòBÔ˶¯Ê±l¾¹ýµãB£¬Çó³öBP=BQ=6-t£¬AP=t£¬PC=5-t£¬¹ýµãP×÷PG¡ÍCBÓÚµãG£¬Ö¤¡÷PGC¡×¡÷ABC£¬Çó³öPG=$\frac{3}{5}$£¨5-t£©£¬CG=$\frac{4}{5}$£¨5-t£©£¬BG=$\frac{4}{5}$£¬Óɹ´¹É¶¨ÀíµÃ³ö·½³Ì£¬Çó³ö·½³ÌµÄ½â¼´¿É
½â´ð
½â£º£¨1£©¡ßËıßÐÎABCDÊǾØÐΣ¬
¡à¡ÏABC=90¡ã£¬
ÔÚRt¡÷ABCÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºAC=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5£»
Èçͼ1£¬¹ýµãP×÷PH¡ÍABÓÚµãH£¬AP=t£¬AQ=3-t£¬
Ôò¡ÏAHP=¡ÏABC=90¡ã£¬
¡ß¡ÏPAH=¡ÏCAB£¬
¡à¡÷AHP¡×¡÷ABC£¬
¡à$\frac{AP}{AC}$=$\frac{PH}{BC}$£¬
¡ßAP=t£¬AC=5£¬BC=4£¬
¡àPH=$\frac{4}{5}$t£¬
¡àS=$\frac{1}{2}$•£¨3-t£©•$\frac{4}{5}$t£¬
¼´S=-$\frac{2}{5}$t2+$\frac{6}{5}$t£¬tµÄȡֵ·¶Î§ÊÇ£º0£¼t£¼3£®
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ËıßÐÎBQPCµÄÃæ»ýÄÜΪ¡÷ABCÃæ»ýµÄ$\frac{13}{15}$£®ÀíÓÉÈçÏ£º
ÒÀÌâÒâµÃ£º-$\frac{2}{5}$t2+$\frac{6}{5}$t=$\frac{2}{15}$¡Á$\frac{1}{2}$¡Á3¡Á4£¬¼´-$\frac{2}{5}$t2+$\frac{6}{5}$t=$\frac{4}{5}$£®
ÕûÀí£¬µÃ
£¨t-1£©£¨t-2£©=0£¬
½âµÃt1=1£¬t2=2£®
ÓÖ0£¼t£¼3£¬
¡àµ±t=1»òt=2ʱ£¬ËıßÐÎBQPCµÄÃæ»ýÄÜΪ¡÷ABCÃæ»ýµÄ$\frac{13}{15}$£»![]()
£¨3£©Èçͼ2£¬
£¨i£©µ±µãQ´ÓBÏòAÔ˶¯Ê±l¾¹ýµãB£¬
BQ=BP=AP=t£¬¡ÏQBP=¡ÏQAP£¬
¡ß¡ÏQBP+¡ÏPBC=90¡ã£¬¡ÏQAP+¡ÏPCB=90¡ã
¡à¡ÏPBC=¡ÏPCB£¬
¡àCP=BP=AP=t
¡àCP=AP=$\frac{1}{2}$AC=$\frac{1}{2}$¡Á5=2.5£¬
¡àt=2.5£»
£¨¢¢£©Èçͼ3£¬µ±µãQ´ÓAÏòBÔ˶¯Ê±l¾¹ýµãB£¬
BP=BQ=3-£¨t-3£©=6-t£¬AP=t£¬PC=5-t£¬
¹ýµãP×÷PG¡ÍCBÓÚµãG£¬
ÔòPG¡ÎAB£¬
¡à¡÷PGC¡×¡÷ABC£¬
¡à$\frac{PC}{AC}$=$\frac{PG}{AB}$=$\frac{GC}{BC}$£¬
¡àPG=$\frac{PC}{AC}$•AB=$\frac{3}{5}$£¨5-t£©£¬CG=$\frac{PC}{AC}$•BC=$\frac{4}{5}$£¨5-t£©£¬
¡àBG=4-$\frac{4}{5}$£¨5-t£©=$\frac{4}{5}$t
Óɹ´¹É¶¨ÀíµÃBP2=BG2+PG2£¬¼´£¨6-t£©2=£¨$\frac{4}{5}$t£©2+[$\frac{3}{5}$£¨5-t£©]2£¬
½âµÃt=$\frac{45}{14}$£®
×ÛÉÏËùÊö£¬°éËæµãP¡¢QµÄÔ˶¯£¬ÉèÏß¶ÎPQµÄ´¹Ö±Æ½·ÖÏßΪl£¬µ±l¾¹ýµãBʱ£¬ÇótµÄÖµÊÇ2.5»ò$\frac{45}{14}$£®
µãÆÀ ±¾Ì⿼²éÁËÏàËÆ×ÛºÏÌ⣬ÆäÖÐÐèÒªÕÆÎÕ¾ØÐÎÐÔÖÊ£¬µÈÑüÈý½ÇÐÎÐÔÖÊ£¬Ï߶δ¹Ö±Æ½·ÖÏßÐÔÖÊ£¬¹´¹É¶¨Àí£¬ÏàËÆÈý½ÇÐεÄÐÔÖʺÍÅж¨µÄÓ¦Óã¬Ö÷Òª¿¼²éѧÉú·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦£¬ÌâÄ¿±È½ÏµäÐÍ£¬µ«ÊÇÓÐÒ»¶¨µÄÄѶȣ®
| A£® | -10 | B£® | 10 | C£® | -6 | D£® | -1 |
| A£® | 0.518¡Á104 | B£® | 5.18¡Á105 | C£® | 51.8¡Á104 | D£® | 518¡Á103 |