题目内容
10.(1)问:A市是否会受到此台风的影响,为什么?
(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.
分析 (1)过点A作AH⊥OD于点H,可求得AH的长为60km,由60>50可知,不会受到台风影响;
(2)过点B作BG⊥OC于点G,可求得BG的长,由离台风中心50千米的区域内会受到台风的影响,即可知会受到影响,然后由勾股定理求得受影响的范围长,即可求得影响的时间.
解答
解:(1)作AH⊥OC,易知台风中心O与A市的最近距离为AD的长度,
∵由题意得:∠HOA=45°,OA=60$\sqrt{2}$km,
∴AH=HO=60$\sqrt{2}$÷$\sqrt{2}$=60km,
∵60>50,
∴A市不会受到此台风的影响;
(2)作BG⊥OC于G,
∵由题意得:∠BOC=30°,OB=80km,
∴BG=$\frac{1}{2}$OB=40km,
∵40<50,
∴会受到影响,
如图:BE=BF=50km,由题意知,台风从E点开始影响B城市到F点影响结束,
∴EG=$\sqrt{B{E}^{2}-B{G}^{2}}$=30km,
∴EF=2EG=60km,
∵风速为40km/h,
∴60÷40=1.5小时,
∴影响时间约为1.5小时.
点评 此题考查了解直角三角形的应用-方向角问题以及勾股定理的应用.此题难度适中,注意掌握数形结合思想的应用,能从实际问题中整理出直角三角形是解答本题的关键.
练习册系列答案
相关题目