ÌâÄ¿ÄÚÈÝ
1£®£¨1£©ÄãÇó³öµÄABµÄ³¤ÊÇ12cm£»
£¨2£©¹ýµãC×÷CD¡ÍABÓÚµãD£¬tΪºÎֵʱ£¬µãPÒÆ¶¯µ½CDÉÏ£¿
£¨3£©tΪºÎֵʱ£¬ÒÔµãPΪԲÐÄ¡¢1cmΪ°ë¾¶µÄÔ²ÓëÖ±ÏßCDÏàÇУ¿
£¨4£©ÒÔµãPΪԲÐÄ¡¢1cmΪ°ë¾¶µÄ¡ÑPÓëCDËùÔÚµÄÖ±ÏßÏཻʱ£¬ÊÇ·ñ´æÔÚµãPÓëÁ½¸ö½»µã¹¹³ÉµÄÈý½ÇÐÎÊǵȱßÈý½ÇÐΣ¿Èô´æÔÚ£¬Ö±½Óд³ötµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾Ý¹´¹É¶¨Àí¼´¿ÉÇóµÃ½á¹û£»
£¨2£©ÓÉÌâ¿ÉµÃ¡ÏBCD=30¡ã£¬¸ù¾Ýº¬30¡ãµÄÖ±½ÇÈý½ÇÐεÄÐÔÖʼ´¿ÉÇóµÃ½á¹û£»
£¨3£©´ËÌâ¿É·Ö×÷Á½ÖÖÇé¿ö£¬¢Ùµ±µãPÔÚCD×ó²à£¬¡ÑPÓëCDµÚÒ»´ÎÏàÇÐʱ£¬¢Úµ±µãPÔÚCDÓҲ࣬¡ÑPÓëCDµÚ¶þ´ÎÏàÇÐʱ£¬¸ù¾ÝÖ±ÏߺÍÔ²µÄλÖùØÏµ½øÐзÖÎö£»
£¨4£©´ËÌâ¿É·Ö×÷Á½ÖÖÇé¿ö£¬¢Ùµ±µãPÔÚCD×ó²à£¬¢Úµ±µãPÔÚCDÓҲ࣬½áºÏµÈ±ßÈý½ÇÐεÄÐÔÖÊ·ÖÎö£®
½â´ð ½â£º£¨1£©¡ß¡ÏACB=90¡ã£¬AC=$6\sqrt{3}$cm£¬BC=6cm£¬
¡àAB=$\sqrt{A{C}^{2}+B{C}^{2}}=12$cm£»
¹Ê´ð°¸Îª£º12cm£»
£¨2£©¡ßÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬AC=$6\sqrt{3}$cm£¬BC=6cm£¬
¿ÉµÃ¡ÏBCD=30¡ã£¬
¡àµ±µãPÒÆ¶¯µ½CDÉÏʱ£¬ÓÐ6-t=2t£¬
½âµÃ£ºt=2£¬
µ±t=2ʱ£¬µãPÒÆ¶¯µ½CDÉÏ£»
£¨3£©¢Ùµ±¡ÑPÓëCDµÚÒ»´ÎÏàÇÐʱ£¬¸ù¾ÝÖ±ÏߺÍÔ²ÏàÇУ¬ÔòÔ²Ðĵ½Ö±ÏߵľàÀëµÈÓÚÔ²µÄ°ë¾¶£¬µÃ£º
3-$\frac{3}{2}$t=1£¬½âµÃ£ºt=$\frac{4}{3}$£»
¢Ú¡ÑPÓëCDµÚ¶þ´ÎÏàÇÐʱ£¬¸ù¾ÝÖ±ÏߺÍÔ²ÏàÇУ¬ÔòÔ²Ðĵ½Ö±ÏߵľàÀëµÈÓÚÔ²µÄ°ë¾¶£¬µÃ£º
$\frac{3}{2}$t-3=1£¬½âµÃ£ºt=$\frac{8}{3}$£»
µ±t=$\frac{4}{3}$»òt=$\frac{8}{3}$£»
£¨4£©¢Ùµ±µãPÔÚCD×ó²à£¬µãPÓëÁ½¸ö½»µã¹¹³ÉµÄÈý½ÇÐÎÊǵȱßÈý½ÇÐΣ¬2-t=$\frac{\sqrt{3}}{2}$£¬
½âµÃ£ºt=2-$\frac{\sqrt{3}}{2}$£»
¢Úµ±µãPÔÚCDÓҲ࣬µãPÓëÁ½¸ö½»µã¹¹³ÉµÄÈý½ÇÐÎÊǵȱßÈý½ÇÐΣ¬t-2=$\frac{\sqrt{3}}{2}$£¬
½âµÃ£ºt=2+$\frac{\sqrt{3}}{2}$£®
µãÆÀ ´ËÌ⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣮½âÌâʱ£¬ÒªÇóѧÉú¾ßÓнâÖ±½ÇÈý½ÇÐΡ¢Ö±ÏߺÍÔ²µÄλÖùØÏµµÈ֪ʶµÄ×ÛºÏÓ¦ÓÃÄÜÁ¦£¬ÄѶȽϴ󣮴ËÌ⿼²éÔ²µÄ×ÛºÏÎÊÌ⣬֪ʶµã¶à£¬¹Ø¼üÊǸù¾ÝÔ²ÓëÖ±ÏߵĹØÏµ½øÐзÖÎö£®
| A£® | 60¡ã | B£® | 55¡ã | C£® | 45¡ã | D£® | 30¡ã |
| A£® | £¨-a£©£¨-a£©2=-a3 | B£® | -2x2£¨-3x£©=-6x4 | C£® | £¨-a£©3£¨-a£©2=-a5 | D£® | £¨-a£©3£¨-a£©3=a6 |