题目内容

7.如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为(  )
A.B.C.D.

分析 过点E作EF⊥QP,垂足为F,连接EQ.由翻折的性质可知QE=QP,从而可表示出QF、EF、EQ的长度,然后在△EFQ中利用勾股定理可得到函数的关系式.

解答 解:如图所示,过点E作EF⊥QP,垂足为F,连接EQ.

由翻折的性质可知:EQ=QP=y.
∵∠EAP=∠APF=∠PFE=90°,
∴四边形EAPF是矩形.
∴EF=AP=x,PF=EA=1.
∴QF=QP-PF=y-1.
在Rt△EFQ中,由勾股定理可知:EQ2=QF2+EF2,即y2=(y-1)2+x2
整理得:y=$\frac{1}{2}{x}^{2}+\frac{1}{2}$.
故选:B.

点评 本题主要考查的是翻折的性质、矩形的性质和判定、勾股定理的应用,表示出QF、EF、EQ的长度,在△EFQ中利用勾股定理列出函数关系式是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网