题目内容
如图,已知△ABC是等腰直角三角形,CD是斜边AB的中线,△ADC绕点D旋转一定角度得到△A'DC',A'D交AC于点E,DC'交BC于点F,连接EF,若![]()
,则![]()
= .
![]()
![]()
![]()
【考点】旋转的性质;平行线的判定;全等三角形的判定与性质;等腰直角三角形;平行线分线段成比例.
【专题】压轴题.
【分析】根据等腰直角三角形的性质及旋转的性质,运用“ASA”证明△ADE≌△CDF,得DE=DF.则有DE:DA′=DF:DC′,得EF∥A′C′.根据相似三角形性质求解.
【解答】解:∵△ABC是等腰直角三角形,CD是斜边AB的中线,
∴CD⊥AB,CD=AD,∠A=∠BCD=45°.
又∵∠ADE=90°﹣∠CDE=∠CDF,
∴△ADE≌△CDF (ASA)
∴DE=DF.
∵DA=DA′,DC=DC′,
∴DE:DA′=DF:DC′,
∴EF∥A′C′.
∴△DEF∽△DA′C′,
∴![]()
.
∵![]()
,则![]()
,
∴![]()
.
故答案为![]()
.
【点评】此题考查等腰三角形性质、旋转的性质、全等三角形的判定与性质及平行线的判定和性质等知识点,综合性较强.
练习册系列答案
相关题目