题目内容

13.计算:
(1)${({\frac{1}{2}})^3}×{({\frac{1}{2}})^2}×{({-\frac{1}{2}})^4}×({\frac{1}{2}})$
(2)${[{{{({-\frac{1}{2}})}^n}}]^2}+{({-\frac{1}{2}})^{2n-1}}×\frac{1}{2}$(n是正整数)

分析 (1)根据同底数幂的乘法,即可解答;
(2)根据幂的乘方,即可解答.

解答 解:(1)原式=$(\frac{1}{2})^{3}×(\frac{1}{2})^{2}×(\frac{1}{2})^{4}×\frac{1}{2}$=$(\frac{1}{2})^{3+2+4+1}=(\frac{1}{2})^{10}$.
(2)原式=$(\frac{1}{2})^{2n}-(\frac{1}{2})^{2n-1}×\frac{1}{2}=(\frac{1}{2})^{2n}-(\frac{1}{2})^{2n}$=0.

点评 本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂的乘法和积的乘方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网