题目内容
19.已知方程组$\left\{\begin{array}{l}{x-y=5}\\{ax+3y=b-1}\end{array}\right.$①无数多个解;②唯一解;③无解.分别求三种情况下a、b的值.分析 将元方程组消元化简为:ax=b的形式其解有三种可能:①当a≠0时方程组有唯一解;②当a=0,b=0时,方程组有无数多个解;③当a=0,b≠0方程组无解;
解答 解:$\left\{\begin{array}{l}{x-y=5}&{①}\\{ax+3y=b-1}&{②}\end{array}\right.$
由①得:x=y+5 ③
将③代入②得:(a+3)y=-5a+b-1,
情况1:当$\left\{\begin{array}{l}{a+3=0}\\{-5a+b-1=0}\end{array}\right.$,即$\left\{\begin{array}{l}{a=-3}\\{b=-14}\end{array}\right.$时,原方程组转化为:$\left\{\begin{array}{l}{x-y=5}\\{x-y=5}\end{array}\right.$,
那么,满足x+y=5的x、y的值有无数对,
即:当a=-3,b=-14时,原方程组有无数多个解;
情况2:$\left\{\begin{array}{l}{a+3=0}\\{-5a+b-1≠0}\end{array}\right.$当$\left\{\begin{array}{l}{a=-3}\\{b≠-14}\end{array}\right.$时,原方程组转化为:$\left\{\begin{array}{l}{x-y=5}\\{x-y≠5}\end{array}\right.$
因为这两个方程互相矛盾,所以方程组无解.
即:当a=-3,b≠-14时,原方程组无解;
情况:当a≠-3时,
由①得:x=y+5 ③
将③代入②得:(a+3)y=-5a+b-1,
因为a≠3,所以y有唯一解:y=$\frac{-5a+b-1}{a+3}$
即:当a≠3,b为任意实数时原方程组有唯一解:$\left\{\begin{array}{l}{x=\frac{b+14}{a+3}}\\{y=\frac{-5a+b-1}{a+3}}\end{array}\right.$
点评 本题考查了二元一次方程组的解的个数问题,关键是要理解使方程ax+by=c的有无解的条件.
| A. | 729 | B. | $\frac{1}{729}$ | C. | 6561 | D. | $\frac{1}{6561}$ |